附件
临床试验数据管理工作技术指南
一、概述
临床试验数据质量是评价临床试验结果的基础。为了确保临床试验结果的准确可靠、科学可信,国际社会和世界各国都纷纷出台了一系列的法规、规定和指导原则,用以规范临床试验数据管理的整个流程。同时,现代新药临床试验的发展和科学技术的不断进步,特别是计算机、网络的发展又为临床试验及其数据管理的规范化提供了新的技术支持,也推动了各国政府和国际社会积极探索临床试验及数据管理新的规范化模式。
(一)国内临床试验数据管理现状
我国的《药物临床试验质量管理规范》(Good Clinical Practice,GCP)对临床试验数据管理提出了一些原则要求,但关于具体的数据管理操作的法规和技术规定目前还处于空白。由于缺乏配套的技术指导原则,我国在药物临床试验数据管理方面的规范化程度不高,临床试验数据管理质量良莠不齐,进而影响到新药有效性和安全性的客观科学评价。此外,国内临
床试验中电子化数据管理系统的开发和应用尚处于起步阶段,临床试验的数据管理模式大多基于纸质病例报告表(Case Report Form,CRF)的数据采集阶段,电子化数据采集与数据管理系统应用有待推广和普及。同时,由于缺乏国家数据标准,同类研究的数据库之间难以做到信息共享。
(二)国际临床试验数据管理简介
国际上,人用药品注册技术要求国际协调会议的药物临床研究质量管理规范(以下简称ICH E6 GCP)对临床试验数据管理有着原则性要求。对开展临床试验的研究者、研制厂商的职责以及有关试验过程的记录、源数据、数据核查等都直接或间接地提出了原则性的规定,以保证临床试验中获得的各类数据信息真实、准确、完整和可靠。
各国也颁布了相应的法规和指导原则,为临床试验数据管理的标准化和规范化提供具体的依据和指导。如:美国21号联邦法规第11部分(21 CFR Part 11)对临床试验数据的电子记录和电子签名的规定(1997年),使得电子记录、电子签名与传统的手写记录与手写签名具有同等的法律效力,从而使得美国食品药品管理局(FDA)能够接受电子化临床研究材料。据此,美国FDA于2003年8月发布了相应的技术指导原则,对Part 11的规定作了具体阐释,并
在计算机系统的验证、稽查轨迹,以及文件记录的复制等方面提出明确的要求。
2007年5月,美国FDA颁布的《临床试验中使用的计算机化系统的指导原则》(Guidance for Industry: Computerized Systems Used in Clinical Investigations)为临床试验中计算机系统的开发和使用提供了基本的参照标准。
而且由国际上相关领域专家组成的临床试验数据管理学会(Society of Clinical Data Management, SCDM)还形成了一部《良好的临床数据管理规范》(Good Clinical Data Management Practice,GCDMP),该文件为临床试验数据管理工作的每个关键环节都规定了相应操作的最低标准和最高规范,为临床试验中数据管理工作的实际操作提供了具体的技术指导。
综上,国际社会和发达国家均已建立了临床试验数据管理的若干法规、规定和技术指导原则,以保证试验数据的质量。而我国这方面的起步较晚,发展缓慢,临床试验数据管理欠规范化,直接影响了我国新药研发与监管。目前国家战略规划建设创新型社会的要求和重大新药创制专项计划对临床试验数据规范化管理提出了更加紧迫的需求。鉴于其重要性和紧迫性,在积极总结和调研临床试验数据管理工作的当前技术水平和发展趋势的基础上,特制订
本技术指南。
本指南从数据管理相关人员的职责、资质和培训,管理系统的要求,试验数据的标准化,数据管理工作的主要内容,数据质量的保障和评估,以及安全性数据及严重不良事件六个方面进行全面阐释,旨在对我国临床试验的数据管理工作起到规范化和指导性作用,适用于以注册为目的的药物临床试验,对上市后临床试验以及其他类型试验也同样具有指导意义。
二、数据管理相关人员的责任、资质及培训
临床试验数据管理工作要求临床试验研究项目团队共同努力、通力协作。研究中与数据管理工作相关的人员涉及申办者、研究者、监查员、数据管理员和合同研究组织(Contract Research Organization,CRO)等。
(一)相关人员的责任
1.申办者
申办者是保证临床数据质量的最终责任人。申办者应制定质量管理评价程序、质量管理计划
与操作指南,并且应设立稽查部门,必要时申办者可自行进行稽查,由不直接涉及试验的人员定期对质量体系的依从性进行系统性检查。此外,申办者还应保证数据的完整性,并对数据管理过程的合规性负有监督之责,包括外包时对CRO相应工作的合规性和数据质量进行监督。
申办者在数据管理工作方面的失责行为举例:研究者未经培训而填写CRF;研究方案不明确或不合理。数据库管理员岗位要求
2.研究者
研究者应确保以CRF或其他形式报告给申办者的数据准确、完整与及时,而且应保证CRF上的数据来自于受试者病历上的源数据,并必须对其中的任何不同给出解释。
研究者在数据管理工作方面的错误/不当行为举例:违反研究方案,如错误的访视时间;源数据录入CRF时错误;实验室仪器人为测量误差;由不具备资质的人员填写CRF;研究者。
3.监查员
监查员应根据源文档核查CRF上的数据,一旦发现其中有错误或差异,应通知研究者,并根据所发现的错误或差异,记录相应的质疑,以确保所有数据的记录和报告正确和完整。
临床监查中常见问题举例:无原始病历或原始病历中无记录(缺失或不全);CRF填写空缺、错误或不规范;不良事件的记录不完整;未向申办者报告有嫌疑的;检验结果不能溯源(实验室数据、心电图、X射线片等)。
4.数据管理员   
数据管理员应按照研究方案的要求,参与设计CRF、建立数据库、对数据标准进行管理、并建立和测试逻辑检验程序。在CRF接收后,录入人员要对CRF作录入前的检查;在CRF数据被录入数据库后,利用逻辑检验程序检查数据的有效性、一致性、缺失和正常值范围等。数据管理员对发现的问题应及时清理,可通过向研究者发放数据质疑(Query)而得到解决。
数据管理员应参加临床研究者会议,为研究团队及时提出改善与提高数据质量的有效措施。
数据管理员的失责行为举例:CRF表格设计不符合方案要求;逻辑检验程序错误;质疑的语言描述中有诱导的成分;按照质疑更新数据库时的错误。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。