中位数、众数、条形统计图和频率分布直方图
频率分布直方图和条形图的区别
中位数(Median)统计学名词。 将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值
众数(Mode)统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
 修正定义:是一组数据中出现次数最多的那个数值,就是众数,有时众数在一组数中有好几个。用M表示。 理性理解:简单的说,就是一组数据中占比例最多的那个数。 用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。条形统计图一般简称条形图,也叫长条图或直条图。条形统计图是用条形的长短来代表数量的大小,便于比较。条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜标出。
频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。(在图中,各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1)
把全体样本分成的组的个数称为 组数。每一组两个端点的差称为组距。落在不同小组中的数据个数为该组的 频数。各组的频数之和等于这组数据的总数。频数与数据总数的比为频率(总频率=各组频率之和,且它的值为1)。频率大小反映了各组频数在数据总数中所占的份量。
    频数分布直方图条与条之间无间隔,而条形统计图有。
1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据。而直方图中,横轴上的数据是连续的,是一个范围。

2)条形统计图是用条形的高度表示频数的大小。而直方图是用长方形的面积表示频数,长方形的面积越大,就表示这组数据的频数越大;只有当长方形的宽都相等时,才可以用长方形的高表示频数的大小。

(3)条形统计图中,各个数据之间是相对独立的,各个条形之间是有空隙的。而在直方图中,各长方形对应的是一个范围,由于每两个相邻范围之间不重叠、不遗漏,因此在直方图中,长方形之间没有空隙

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。