频域卷积定理证明
卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积对应于另一个域中的乘积,例如时域中的卷积对应于频域中的乘积。
其表示f 的傅里叶变换。下面这种形式也成立
借由傅里叶逆变换,也可以写成
注意以上的写法只对特定形式定义的变换正确,变换可能由其它方式正规化,使得上面的关系式中出现其它的常数因子。
这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔上定义的傅里叶变换。
利用卷积定理可以简化卷积的运算量。对于长度为的序列,按照卷积的定义进行计算,需要做组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘
傅里叶变换公式证明法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列.即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换.在实际应用中通常采用快速傅里叶变换计.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论