《复变函数与积分变换》课程教学大纲
一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平)
课程性质:《复变函数与积分变换》的理论和方法广泛应用于电气工程、通讯工程、自动化等相关学科,并且已经成为解决众多理论和实际问题的强有力工具,成为了电气工程及其自动化专业一门重要的基础理论课程,而高等数学的是它的必须的先修课程。对于本专业而言,是学习《自动控制原理》、《现代控制理论》、《线性系统理论》、《信号与系统》等许多相关课程的必须先修课程之一。
教学目标:通过本课程的讲授和学习,使学生在学习高等数学的基础上,系统的掌握《复变函数与积分变换》中必要的基础理论和常用的计算方法,培养学生比较熟练的运算能力,能比较熟练运用复变函数、积分变换的方法来有效地比较系统地解决一些问题。并且逐步培养能够建立比较复杂系统数学模型的能力,在此基础上,进一步地提升分析问题、解决问题的水平和能力。并为后续的专业基础课程、专业课程的学习,以及将来从事教学、科研及其它实际工作打下必要相当水准的理论知识基础。
本课程的具体教学目标如下:
1.熟练掌握复数与复变函数、解析函数、复变函数积分、复级数、留数、傅里叶变换和拉普拉斯变换的基本概念、基本理论、基本方法和某些相关的应用,为进一步学习打下坚实的理论基础。
2.大致了解理想典型电子线性器件的时域和频域的数学模型,为后续课程比较复杂的线性电气系统或者比较复杂的线性力学系统的数学模型的建立、分析和控制做好理论、学识上准备。
3.基本理解时滞环节的频域表达形式,并且与上述的线性系统有机结合,构建相对更加复杂的非线性系统的数学模型,为以后专业课上对此非线性系统的数学模型的分析、控制做好基础的准备。为以后解决实际复杂工程问题做好知识上的储备。
教学目标与毕业要求的对应关系:
毕业要求 | 指标点 | 课程目标 | 对应关系说明 |
毕业要求1:工程知识 | 1-1 握专业所需的数理知识,能用于专业问题的理解、建模、分析与求解 | 教学目标1 | 能比较熟练运用复变函数、积分变换的方法,大致了解理想典型电子线性器件的时域和频域的数学模型。 |
毕业要求2:问题分析 | 2-1 运用数理和工程知识进行专业领域复杂工程问题中的内涵识别与理解分析 | 教学目标2 | 了解理想典型电子线性器件的时域和频域的数学模型,为复杂的线性系统的数学模型分析提供理论基础。 |
教学目标3 | 基本理解时滞环节的频域表达形式,并且对与线性系统有机结合、构建相对更加复杂的非线性系统的数学模型有所认识。 | ||
二、课程教学内容及学时分配(含课程教学、自学、作业、讨论等内容和要求,指明重点内容和难点内容。重点内容:★;难点内容:∆
1、 复数和复变函数(4学时)(支撑教学目标1)
1.1复数
知识点:复数的概念,共轭复数及复数的四则运算
1.2复平面及复数的三角表达式
知识点:复平面,复数的模与幅角及三角表达式,复数模的三角不等式,利用复数的三角表达式作乘除法,复数的乘方和开方。
1.3平面点集
知识点:邻域和开集,区域、简单曲线,连通域,无穷远点
1.4复变函数
知识点:复变函数的概念,复变函数的极限与连续性
要求:掌握复数的概念(复数是向量)及其各种不同的表示方法,了解各个表示方法的特点和适合使用的场合;复数的四则运算、乘方、开方运算及其几何意义;能够在复平面上到由代数或三角表示复数的坐标所在;共轭复数及其运算性质;复变函数的概念,复变函数的极限和连续的概念(与实函数做比较)。
了解:复平面的概念,平面点集的概念,复变函数的极限和连续的概念。
理解:复变函数的概念,共轭复数及其运算性质。
掌握:复数的概念及其各种表示法,复数的四则运算、乘方、开方运算及其几何意义。
重点内容:复数的四则运算及乘幂与开方的运算,复数的表示法,复变函数的概念。
教学难点:复变函数的极限与连续性。
2、 解析函数(6学时)(支撑教学目标1)
2.1解析函数的概念
知识点:复变函数的导数,解析函数的概念与求导规则,函数解析的充要条件
2.2解析函数与调和函数的关系
知识点:调和函数,共轭调和函数
2.3初等函数
知识点:指数函数,对数函数,幂函数,三角函数在复数域下的概念及解析性
要求:掌握函数解析的充要条件,柯西-黎曼条件判别函数解析性的方法,解析函数与调和函数的关系。
了解:调和函数的定义,初等函数的定义及解析性。
理解:复变函数导数的概念、运算性质及求导方法,解析函数的概念。
掌握:函数解析的充要条件,用柯西-黎曼条件判别函数解析性的方法,解析函数与调和函数的关系。
重点内容:傅里叶变换公式性质解析函数的概念,函数解析的充要条件,解析函数与调和函数的关系。
教学难点:解析函数的概念,函数解析的充要条件。
3、 复变函数的积分(6学时)(支撑教学目标1)
3.1复变函数的积分
知识点:复变函数积分的定义,基本性质,计算方法
3.2柯西-古萨定理
知识点:柯西积分定理,复合闭路定理,利用原函数求解析函数的积分
3.3柯西积分公式
知识点:柯西积分公式,高阶导数公式
要求:掌握复变函数积分的定义,基本性质和基本的计算方法;原函数的概念,如何利用原函数求解析函数的积分。柯西积分定理,柯西积分公式,高阶导数公式及复合闭路定理的计
算。
了解:柯西积分定理、柯西积分公式、复合闭路定理的证明。
理解:复变函数积分的概念和性质,原函数的概念,利用原函数求解析函数的积分。
掌握:柯西积分定理,柯西积分公式,高阶导数公式及复合闭路定理的计算。
重点内容:柯西积分定理,柯西积分公式,复合闭路定理及其应用。
教学难点:复合闭路定理及其应用。
4、 级数(6学时)(支撑教学目标1)
4.1复级项数的基本概念
知识点:复数项级数的概念,复变函数项级数的概念及其收敛的判定
4.2幂级数
知识点:阿贝尔定理,收敛半径的求法
4.3泰勒级数
知识点:泰勒展开定理,直接法,间接法将函数展开成泰勒展开式
4.4罗朗级数
知识点:罗朗定理,将函数在不同环域内展开成罗朗级数
要求:掌握复数列极限的概念,复数列收敛的充要条件,复函数项级数收敛域与和函数的概念,阿贝尔定理,幂级数在其收敛圆内的性质。幂级数收敛半径的求法,将函数展开成泰勒展开式、罗朗展开式的方法。
了解:复数列极限的概念,复数列收敛的充要条件,复函数项级数收敛域与和函数的概念,幂级数在其收敛圆内的性质。
理解:阿贝尔定理,泰勒级数概念,罗朗级数概念。
掌握:幂级数收敛半径的求法,将函数展开成泰勒展开式、罗朗展开式的方法。
重点内容:泰勒级数,罗朗级数。
教学难点:间接法求简单函数的泰勒展开式,在不同环域内将解析函数展开成罗朗展开式。
5、 留数定理(6学时)(支撑教学目标1、2)
5.1零点与孤立奇点
知识点:孤立奇点的概念,判别,零点与极点的关系
5.2留数定理
知识点:留数的计算方法,留数定理及其应用
5.3留数理论在实积分中的应用
知识点:不同的三类实积分的计算
要求:掌握零点、孤立奇点以及孤立奇点的分类及判定方法,零点与极点的关系。留数的概念及计算方法,留数定理及其在定积分计算中应用。
了解:孤立奇点性质的证明,留数在定积分计算中的应用。
理解:孤立奇点的概念,函数在孤立奇点处留数的概念。
掌握:孤立奇点的分类及判定方法,留数的计算方法,留数定理及其应用。
重点内容:孤立奇点的概念,留数的概念及计算方法,留数定理。
教学难点:孤立奇点的判别,留数在定积分中的应用。
6、 傅里叶变换(4学时)(支撑教学目标2、3)
6.1傅里叶变换的概念与性质
知识点:傅里叶积分定理,傅里叶变换,单位脉冲函数及傅里叶变换
6.2傅里叶变换的性质
知识点:线性性质、位移性质、微分性质、积分性质、乘积定理、能量积分、卷积定理
6.3傅里叶变换的应用
知识点:傅里叶变换应用的举例
要求:掌握傅里叶变换、傅里叶变换的逆变换的定义以及相关的性质和定理。典型时域信号的频域表达式,大致有个一一对应的概念。
了解:函数的定义,卷积定理。
理解:傅里叶变换的定义及傅里叶积分公式。
掌握:函数的基本性质及其傅氏变换,傅氏逆变换的基本性质。
重点内容:求傅氏变换的方法,求傅氏逆变换的方法,傅氏变换的基本性质。
教学难点:求傅氏变换和傅氏逆变换的方法。
7、 拉普拉斯变换(4学时)(支撑教学目2、3)
7.1拉普拉斯变换的概念
知识点:傅里叶变换的局限性,拉普拉斯变换的定义与存在性定理,拉普拉斯逆变换公式
7.2拉普拉斯变换的性质
知识点:线性性质、微分性质、积分性质、位移性质、延迟性质
7.3卷积及其性质
知识点:卷积的概念,卷积定理
7.4拉普拉斯变换的应用
知识点:拉普拉斯变换在求解微分方程中的应用举例
要求:掌握拉氏变换、拉氏变换的逆变换的定义以及相关的性质和定理,利用留数计算拉氏逆变换的方法以及拉氏变换在求解微分方程中的应用。大致了解理想典型电子线性器件的时域和频域的数学模型,为后续课程比较复杂的线性电系统或者比较复杂的线性力学系统的数学模型的建立、分析和控制做好理论、学识上准备。进一步如果有可能,基本理解时滞环节的频域表达形式,并且与上述的线性系统有机结合,构建相对更加复杂的非线性系统的数学模型,为以后专业课上对此非线性系统的数学模型的分析、控制做好基础的准备。为以后解决实际复杂工程问题做好知识上的储备。
了解:拉氏变换在求解微分方程中的应用。
理解:拉氏变换的定义,反演积分公式。
掌握:拉氏变换的性质,利用留数计算拉氏逆变换的方法。
重点内容:拉氏变换的性质,拉氏变换的应用。
教学难点:利用留数计算拉氏逆变换。
三、教学方法
主要通过实函数与复函数的对比,引导学生自己发现两者之间的联系和不同,从而总结出复变函数的一些特征和结论。以此培养学生分析问题解决问题的能力,培养学生通过已经解决过的问题分析出未知问题的规律以及症结所在。在积分变换的教学过程中,主要通过由傅里叶变换得到拉普拉斯变换的特征和性质。从而培养学生解决问题的能力。让学生知道解决问题的一般方法:由特殊现象到一般规律,再由一般规律来得到特殊情况的解决方法。传统教学手段与现代教学手段相结合,由于总学时的限制,以传统教学手段为主,采用多媒体辅助教学的教学手段。在教学方式上,根据具体教学内容,综合运用课堂讲授和演示、课堂讨论、课堂练习、发现学习法和自学指导法,通过引入问题和启发式教学,使学生更加明确教
学内容的知识体系,引导学生主动学习,激发内在学习动机,提高课堂的积极性。在教学过程中,引导学生发现问题,思考解决方案,为后续教学内容作铺垫。
作业是本课程的主要实践环节,每次课程均应有相应的作业作为学生的练习。作业分为两种类型:一种为必做题,另一种为选做题,学生根据自己的实际情况选择做题。
辅导答疑方式有随堂答疑、作业集中答疑、QQ或 WE CHAT答疑、E-MAIL答疑和定点、定时间的答疑,期中考试、期末考试前分别安排一次集中答疑。
在教学方法的实际执行过程中,每个教学环节都应具有明确的目的性。同时,以上教学方法需要根据教学过程中的实际效果、学生对知识点的掌握和应用情况不断改进。教学效果不好、学生对知识点理解程度不高时,应适当调整教学方法,适当增加演示法或实验训练法,或在讲授后续教学内容时,引导学生前后联系,结合前置难点内容进行讨论,强化知识掌握。在学生对知识掌握情况较好,系统性较好、实验训练效果较好的情况下,适当提高教学内容或实验内容的难度,或增加发现学习法和自学指导法,设置具体应用问题,引导学生探索解决方案。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论