关于人类身高的遗传学研究综述-医学遗传学论文-基础医学论文-医学论文
——文章均为WORD文档,下载后可直接编辑使用亦可打印——
摘 要: 身高受遗传和环境因素共同影响, 其中遗传因素对身高的影响更大。身高遗传学的基因研究, 从家系单基因 分析到复杂疾病/性状的候选基因关联分析、全基因组关联研究, 每一阶段都取得了重大成果。目前, 已发现并鉴定了数百个与身高相关的遗传位点, 解释了身高遗传的部分机制, 但大部分相关基因位点对身高稳定精确的作用机制尚不明了, 表明身高受多基因的复杂调控。该文就身高的遗传学研究概况作一综述。
关键词: 身高; 遗传学; 分析; 候选基因; 全基因组关联研究;
Abstract: Height is influenced by genetic and environmental factors. Medical studies have confirmed that genetic factors have a greater impact on height development. The genetic research of height genetics has gone through family single gene linkage analysis to candidate gene association analysis of complex diseases/traits and genome-wide association study. Great achievements have been achieved in every stage of research. So fa
r, hundreds of genetic sites associated with height have been found and identified, which explains part of the mechanism of height genetics. The mechanisms of the stability and accuracy of most of the related gene loci remain unknown. These indicate that height is a complex trait controlled by multiple genes. In this paper, a summary of the genetic research of height is reviewed.
Keyword: Height; Genetics; Linkage analysis; Candidate gene; Genome-wide association study;
身高是人体生长发育的重要指标之一, 受遗传和环境因素的共同影响, 在特定的历史时期和特定的人中, 遗传是影响身高差异的主要因素。用经典的研究方法对同卵、异卵双生子的身高差异进行分析, 结果显示身高的遗传度高达70%~86%[1,2,3,4]。人类体遗传学通过对不同人种、大家系、性别和年龄等相关因子调查, 对收养子和家庭成员及亲属之间身高的相关性分析, 证实身高的遗传是由多基因决定的数量性状[5,6]。本文就身高的遗传学研究概况作一综述。
1 分析
传统 分析源于家系分析, 是单基因遗传病定位克隆方法的核心。随着重组DNA和分子克隆技术的出现, 分析成为人类基因定位的重要手段[7]。通过 分析发现了具有遗传标记的基因区域, 对遗传标记进行基因分型, 运用概率统计方法, 算出遗传标记与身高基因之间的重组率, 评估两者之间的距离, 判断是否 , 实现基因或变异位点定位, 然后进行基因位置克隆, 明确基因的功能。 分析适用于致病性高、数量少的遗传变异;对于直接寻疾病相关基因来说, 分析仍是不可或缺的基本手段[8]。但对于复杂疾病、基因多态性复杂表型、中效甚至弱效的突变的研究应选用基因关联分析, 以利于较精确定位。
2 关联分析
关联分析是检测体中疾病/性状和等位基因是否存在相关性的方法, 适合多基因遗传模式。关联分析可直接分析候选基因和定位区域内的变异, 也可用于全基因组疾病定位。候选基因可能是结构基因、调节基因或是在生化代谢途径中影响性状表达的基因。与身高相关的候选基因通常选择一些已知其生物学功能和序列的基因, 它们参与机体生长发育过程, 但这类基因在身高增长的表达情况尚不完全明确。和身高有关的候选基因可能有几十个, 其中研究较多的基因包括维生素D受体基因、雌激素受体 (ESR) 基因、甲状旁腺素/甲状旁腺素相关肽
(PTH/PTHr P) 受体基因、芳香化酶P450相关基因 (CYP19) 等。随着测序技术手段的不断提高, 完成人类基因组计划和国际人类基因组单体型图计划后, 全基因组关联研究已经成为研究身高等数量性状/复杂疾病的重要方法, 旨在人类全基因组范围内测序出单核苷酸多态性 (single nucleotide ploymorphism, SNP) , 并进行对照分析或关联分析, 从中筛选出与身高关联的基因变异, 该方法突破了候选基因法需预先设定影响基因的限制, 发现了许多新的基因区域。
2.1 与身高相关的候选基因
2.1.1 维生素D受体基因
维生素D受体是介导1, 25 (OH) 2D发挥生物效应的转录因子, 属于类固醇激素/甲状腺激素受体。维生素D受体等位基因的多态性与骨密度、骨转换、肠道钙吸收有关联, 与骨骼生理参数正常变异相关, 是骨代谢的遗传标记[9]。维生素D受体基因定位于染体12q13-14区域, 由9个外显子组成, 基因序列上有30余个多态性位点, 其中研究较多的有Bsm I、Apa I、Taq I
、Fok I, 均是参与骨代谢的主要位点。对性别、种族不同的人进行维生素D受体基因多态性与身高关系的研究, 出现较多不一致的结果。JakubowskaPietkiewicz等[10]对395名6~18岁儿童的研究显示, Fok I位点上F等位基因可使身高增长 (P=0.002) 。Emmanouilidou等[11]对47名特发性矮小的希腊儿童的关联研究中, 显示rs10735810 (Fok I) 与特发性矮小有关联, 携带TT (ff) 基因型的特发性矮小儿童明显矮于正常者。Fang等[12]对14 157名个体资料进行荟萃分析, 显示Bsm I位点上BB基因型的个体比bb基因型的个体高0.6 cm (P=0.006) 。Ferrarezi等[13]对319名肥胖儿童的研究中发现, Bsm I (rs1544410) 和Taq I (rs731236) 的基因型与青春期儿童的身高显着相关;携带Bsm I低频等位基因的纯合子比高频等位基因纯合子高4 cm (P=0.0006) ;单倍体分析证实Bsm I和Taq I的低频等位基因与身高增长有关。Jorde等[14]亦报道了维生素D受体基因的Bsm I (rs1544410) 和Apa I (rs7975232) 的多态性与身高有显着关联性。
2.1.2 雌激素受体 (ESR) 基因
雌激素受体包括核受体和膜性受体, 前者有ESR1、ESR2亚型, 后者有G蛋白偶联受体家族的GPER1 (GPR30) 、Gaq-ER及ER-X亚型。不同的亚型在骨组织中含量及介导雌激素发
挥生物功能的作用不同, ESR1调节成骨细胞的生长, ESR2参与骨的形成与重吸收;GPER1存在于成骨细胞和破骨细胞中, 在青春期时, 其表达呈低水平, 不随年龄的增长而改变, 其在骨组织中调控机制尚不清楚。ESR1基因定位于染体6q24-27区域, 由8个外显子和7个内含子组成。Kulik-Rechberger等[15]研究127名健康的女孩初潮身高与ESR1基因Pvu II和Xba I多态性的关联性, 发现初潮年龄与ESR1基因多态性无关;有pp基因型的女孩在初潮时的平均身高比PP型纯合子矮3.2 cm, 而且xx型纯合子比XX型和Xx型的基因型分别矮3.0 cm和3.9 cm。袁意等[16]研究了中国汉族355例特发性矮小患儿, 发现ESR1位点rs65571775与特发性矮小有关联。Dahlgren等[17]研究瑞典乌普莎拉两组70岁男性身高与ESR1的关系, ULSAM组1 153名男性, PIVUS组为507名男性和509名女性, 结果发现染体6q25.1上的内含子4位点rs2179922与男性身高有关联, 而女性则无此关联;在ULSAM组G等位基因纯合子的携带者比其他两种基因型的人高0.9 cm, 在PIVUS组则高2.3 cm。
2.1.3 芳香化酶P450相关基因 (CYP19)
芳香化酶可催化雄激素转化为雌激素, 并调节两者平衡, 又称为雌激素合成酶。芳香化酶主要由芳香化酶P450蛋白组成, 其编码基因是CYP19, CYP19位于第15号染体上 (15q21) ,
有11个外显子。芳香化酶的活性存在于骨骼, 因雌激素与骨发育密切相关, 故芳香化酶对身高的作用引起人们的关注。不少学者报道了CYP19的多态性与身高变异关系的研究, 结果各异。Yang等[18]研究1 873名高加索人的身高, 结果发现单倍体Block4中rs730154与身高变异显着相关。而邢瑞仙等[19]报道CYP19的多态性对藏族人身高影响不明显。是否因人种或环境等因素不同造成结果不一, 尚需更多研究资料加以分析。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论