bootstrap检验法
Bootstrap检验法是一种基于自助法的统计分析方法,主要用于对参数估计值的置信区间和假设检验进行评估。Bootstrap检验法的基本思想是,通过从一个样本中反复抽取一定量的样本数据进行重复抽样(有放回),来估计统计学量(例如均值或标准差)的分布,从而得到置信区间或假设检验的结果。具体步骤如下:
1. 收集样本数据。
2. 根据样本数据进行统计量的估计,例如平均值、方差、相关系数等。
3. 从原始样本数据中以随机方式重复地抽取n次样本,每次抽取的样本数量为原始数据集的大小,即有放回抽样。
4. 从每个新的抽样集合中计算与原始样本数据相同的统计量。
5. 重复步骤3和4多次,得到每个抽样集合中统计量的分布。
6. 利用这些分布,可以得到置信区间或假设检验的结果。例如,置信区间可以通过从统计量
分布的上下两个百分位数中得出,如果观察值在这个区间内,那么就可以认为其统计量值相对于总体人有置信度。
Bootstrap检验法的优点在于可以不依赖于正态分布等假设条件,并且能够处理两个或多个样本之间的相互作用和依赖性。缺点在于需要进行大量的计算,因此对于大样本的情况,其计算时间可能会很长。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论