高等数学(下册)试卷(一)
一、填空题(每小题 3 分,共计 24 分)
1、 z = | log a ( x2 | y 2 )( a 0) 的定义域为 D= | 。 | |||||||||||||
2、二重积分 | ln( x2 | y 2 )dxdy 的符号为 | 。 | |||||||||||||
|x| |y| 1 | ||||||||||||||||
3 、由曲线 | y | ln x 及直线 | x | y | e 1 , y | 1 所围图形的面积用二重积分表示 | ||||||||||
为 | ,其值为 | 。 | ||||||||||||||
4 | L 的参数方程表示为 | x | (t) | ( | x | ), | 则弧长元素 | ds | 。 | |||||||
、设曲线 | ||||||||||||||||
y | (t) | |||||||||||||||
5 、 设 曲 面 ∑ 为 x2 | y 2 | 9 介 于 z | 0 及 z | 3 间 的 部 分 的 外 侧 , 则 | ||||||||||||
(x2 | y2 | 1)ds | 。 | |||||||||||||
6、微分方程 dy | y | tan | y 的通解为 | 。 | ||||||||||||
dx | x | x | ||||||||||||||
7、方程 y( 4) | 4 y | 0 的通解为 | 。 | |||||||||||||
8、级数 | 1 | 的和为 | 。 | |||||||||||||
n | 1 n(n | 1) | ||||||||||||||
二、选择题(每小题 | 2 分,共计 | 16 分) | ||||||||||||||
1、二元函数 z | f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是( | ) | ||||||||||||||
(A) f ( x, y) 在 (x0 , y0 ) 处连续;
(B) f x ( x, y) , f y ( x, y) 在 ( x0 , y0 ) 的某邻域内存在;
( C) | z | f x ( | x0 , y0 ) | x f y ( x0 , y0 ) y 当 | ( x) 2 | ( | y) 2 | 0 时,是无穷小; | |||||||||
( D) lim | z | f x ( x0 , y0 ) x | f y ( x0 , y0 ) y | 0 。 | |||||||||||||
2 | 2 | ||||||||||||||||
x | 0 | ( | x) | ( y) | |||||||||||||
y | 0 | ||||||||||||||||
2、设 u | yf ( x ) | xf ( y ), 其中 f 具有二阶连续导数,则 | x | 2u | y | 2 u | 等于( | ) | |||||||||
y | x | x 2 | y 2 | ||||||||||||||
(A) x | y ; | ( B) x ; | (C) y ; | (D)0 | 。 | ||||||||||||
3、设 | : x 2 | y 2 | z2 | 1, z | 0, 则三重积分 I | zdV 等于( | ) | ||||||||||
( A) 4 2 d | 2 d | 1 | 3 sin cos dr ; | |
r | ||||
0 | 0 | 0 | ||
2 d | d | 1 | dr ; | ||||||||
( B) | r 2 sin | ||||||||||
0 | 0 | 0 | |||||||||
2 | 2 d | 1 | 3 sin | div高数cos | dr ; | ||||||
( C) | d | r | |||||||||
0 | 0 | 0 | |||||||||
2 | d | 1 | 3 sin | cos | dr 。 | ||||||
( D) | d | r | |||||||||
0 | 0 | 0 | |||||||||
4、球面 x2 | y2 | z2 | 4a 2 与柱面 x2 | y 2 | 2ax 所围成的立体体积 | V=( | ) | ||||
(A) 4 2 d | 2 a cos | 4a2 | r 2 dr ; | ||||||||
0 | |||||||||||
0 | |||||||||||
(B) 4 2 d | 2 a cos | r 4a 2 | r 2 dr ; | ||||||||
0 | |||||||||||
0 | |||||||||||
(C) 8 2 d | 2 a cos | r 4a 2 | r 2 dr ; | ||||||||
0 | |||||||||||
0 | |||||||||||
(D) | 2 d | 2a cos | r 4a 2 | r 2 dr 。 | |||||||
0 | |||||||||||
2 | |||||||||||
5、设有界闭区域 D 由分段光滑曲线 | L 所围成, L 取正向,函数 P(x, y), Q( x, y) 在 D 上 | ||||||||||
具有一阶连续偏导数,则 | Pdx | Qdy ( | ) | ||||||||
L | |||||||||||
(A) | ( | P | Q ) dxdy |
D | y | x | |
(C) | ( | P | Q ) dxdy |
D | x | y | |
; ( B) ( Q P )dxdy ;
D y x
; ( D) ( Q P )dxdy 。
D x y
6、下列说法中错误的是( | ) | |||||
( A) | 方程 xy | 2y | x 2 y | 0 | 是三阶微分方程; | |
( B) | dy | x | dy | |||
方程 y | y sin x 是一阶微分方程; | |||||
dx | dx | |||||
( C) | 方程 ( x 2 | 2xy 3 ) dx | ( y2 | 3x 2 y 2 ) dy 0 是全微分方程; | ||
( D) | 方程 dy | 1 x | 2 y 是伯努利方程。 | |||
dx | 2 | x | ||||
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论