幂函数教学设计〔共7篇〕
第1篇:幂函数教学设计    《幂函数》教学设计
    一、设计构思
    设计理念
    注重开展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造〞过程。我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。
    注重提高学生数学思维能力。课堂教学是促进学生数学思维能力开展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学〞的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用
类比法进行探讨,加深学生对类比法的体会与应用。
    注重学生多层次的开展。在问题解决的探究过程中应表达“以人为本〞,充分表达“人人学有价值的数学,人人都能获得必需的数学〞,“不同的人在数学上得到不同的开展〞的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验根底之上,而学生的根底知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。
    注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
    另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
    教材分析
    幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。该教学内容在人教版试验修订本中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生
活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。《标准》将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的根本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了根本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。
    教学目标确实定
    鉴于上述对教材的分析和新课程的理念确定如下教学目标:
    ⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
    ⑵能应用幂函数的图象和性质解决有关简单问题。
    ⑶加深学生对研究函数性质的根本方法和流程的经验。
    ⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
    ⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。
    教学方法和教具的选择
    基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,表达以学
    生为主体,教师主导作用的教学思想。
    教具:多媒体。制作多媒体以提高教学效率。
    教学重点和难点
    重点是从具体幂函数归纳认识幂函数的一些性质并作简单应用。
    难点是引导学生概括出幂函数性质。
    教学流程
    基于新课程理念在教学过程中的表达,教学流程的基线为:
    考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和根本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的根本内容和方法为暗线,教学过程中同时展开。
    明线:
    暗线:二、实施方案
    问题导引师生活动设计意图
    问题情境⑴写出以下y关于x的函数解析式:
    ①正方形边长x、面积
    ②正方体棱长x、体积
    ③正方形面积x、边长
    ④某人骑车x秒内匀速前进了1,骑车速度为
    ⑤一物体位移y与位移时间x,速度1/s
    学生口答,教师板书答案。幻灯片演示问题。
    由具体问题入手,从熟悉的情景引入,提高学生的参与程度。符合学生认识特点。
    数
    学
    建
    构
    ⑵上述函数解析式有什么共同特征?是否为指数函数?学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳。投影演示定义。引导学生观察,训练学生归纳能力。并与前面知识进行区分,以进一步帮助学生明晰概念。
    ⑶判别以下函数中有几个幂函数?
    ①y=②y=2x2③y=x④y=x2+x⑤y=-x3
    学生独立思考,答复。学生鉴别。幻灯片演示题目。
    稳固概念,强化学生对概念形式特征的把握。
    ⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?
    学生讨论,教师引导。学生答复。
    引导学生回想前面学习指数函数与对数函数的研究内容和过程。启发学生用类比思想进行研究幂函数。
    ⑸幂函数的定义域是否与对数函数、指数函数一样,具
    有相同的定义域?学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。
    激发学生探讨的欲望,提高学生主动参与程度。
    ⑹写出以下函数的定义域,并指出它们的奇偶性:①y=x②y=③y=x④y=x
    学生解答,并归纳解决方法。引导学生与指数函数、对数函数对照比拟。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。
    ⑺上述函数的单调性如何?如何判断?
    学生思考:作图引发学生作图研究函数性质的兴趣。函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。
    ⑻在同一坐标系内作出上述函数的图象。学生作图,教师巡视。将学生作图用实物投影仪
演示,指出优点和错误之处。教师利用几何画板演示通过超级链接几何画板演示。训练学生作图的根本功,加强学生的实践,让学生在自己的经验中认识幂函数的图象。防止教师直接使用计算机演示图象,剥夺学生动手的时机。
    ⑼上述函数图象有哪些共同点?学生讨论,总结。教师引导。可将学生已熟悉的函数y=,y=x一同投影,帮助学生观察。
    训练学生观察分析能力。
    ⑽答复第7个问题。
    学生思考,答复。教师注意学生表达的严密。训练学生的语言表达能力。再次体会与指数函数、对数函数性质的区别。体会幂指数的不同情况对函数单调性的影响。
    ⑾图象之间有什么区别?特别是在分布上。与常数有什么联系?
    教师通过几何画板演示图象在象限内的变化规律,以验证学生猜测。通过超级链接几何画板演示。
    这是较高要求,可以让学生自由猜测和发言。进一步提高学生观察,归纳能力。
    数
    学
    应
    用⑿稳固练习写出以下函数的定义域,并指出它们的奇偶性和单调性:①y=x②y=x③y=x。
    学生独立思考并答复。
    训练学生自觉运用幂函数图象性质的根本规律。
    ⒀简单应用1:比拟以下各组中两个值的大小,并说明理由:
    ①0.75,0.76;
    ②,;
    ③0.23,0.24;
    ④0.31,0.31
    学生思考,作答,教师引导学生表达语言的逻辑性。
    训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。
    ⒁请学生考虑可以如何验证上述答案的正确。
    学生实践。使用计算器验证,提高学生使用学习工具的意识。
    ⒂简单应用2:幂函数y=x在区间上是减函数,求的值。
    学生思考,作答。教师板演。对幂函数定义进一步稳固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。
    ⒃简单应用2:
幂函数定义        学生思考,作答。教师板演。
    训练学生灵活使用性质解题。
    数学交流⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验?学生思考、小组讨论,教师引导。让学生回忆,小结,将对学生形成知识系统产生积极影响。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。