幂函数和指数函数的影响
1、简介
将形如的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,幂函数定义指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。
幂函数:一般地,形如y=xa(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x、y=x2、y=1/x(注:y=1/x=x-1等都是幂函数,而y=2x、y=x2-x等都不是幂函数。
举例y=x^2 或y=x^3
幂函数:一般地,形如y=xa(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x、y=x2、y=1/x(注:y=1/x=x-1等都是幂函数,而y=2x、y=x2-x等都不是幂函数。
举例y=x^2 或y=x^3
2、幂指函数性质
最简单的幂指函数就是y=x^x。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点。其实这种现象与幂函数有着内
在的联系,也就是说,幂函数也存在x<0时非整指数幂x^(n/2m)的漏洞,这一问题有待专家学者们认真研究后,统一思想,妥善解决。
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值e^-(1/e)≈0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y=-e^(1/e)≈-1.4447和y=e^(1/e)≈1.4447之间,并在x→-∞时,双尾收敛于y=0。
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因。
幂函数特性
a小于0时,x不等于0;
a的分母为偶数时,x不小于0;
a的分母为奇数时,x取R。
3、幂函数的值域与定义域
当a为不同的数值时,幂函数的定义域的不同情况如下:
1. 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据a的奇偶性来确定,即如果同时q为偶数, 则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时a为奇数,则函数的定义域为所有非零实数。
2. 当x为不同的数值时,幂函数的值域的不同情况如下:
1.在x大于0时,函数的值域总是大于0的实数。
2. 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
4、幂函数的奇偶、单调性与图像
如过一个函数是单纯的幂函数的话,y=x的a次方
a为偶数,函数为偶函数;a为奇数,函数为奇函数
a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
a小于0时,a越小,图形倾斜程度越大。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论