高中数学教案幂函数
一、知识导入(5分钟)
1. 引导学生回顾指数的概念和性质。
2. 提出问题:如果基数是一个固定不变的正数,对应的函数关系式又是怎样的呢?
幂函数定义
二、理论讲解(15分钟)
1. 定义幂函数:幂函数是以自变量的幂作为一个固定底数的函数,一般写成f(x)=ax^m,其中a为非零实数,m为实数。
2. 幂函数的性质:幂函数的定义域为全体实数,零次幂函数为一个常函数,正次幂函数严格单调递增,负次幂函数严格单调递减,平方函数的图像为抛物线。
三、例题练习(20分钟)
1. 让学生计算并画出函数f(x)=2x^3在区间[-2,2]上的图像。
2. 让学生求解函数g(x)=3x^-2在x=2时的函数值。
3. 让学生计算函数h(x)=4x^-1和函数k(x)=-5x^0的导数。
四、拓展应用(10分钟)
1. 提出实际问题:某种材料每小时衰减10%,求衰减后材料的质量与时间的关系?
2. 让学生利用幂函数解决上述问题,并画出关系图像。
五、课堂总结(5分钟)
1. 总结幂函数的定义、性质和图像特点。
2. 引导学生思考幂函数在实际生活中的应用。
六、作业布置
1. 完成课堂练习题。
2. 思考并解决实际问题:如果某种物质的衰减速度与其质量成正比,利用幂函数建立其衰减规律关系。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。