一、特殊角三角函数值
二、诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cos α
cos(π/2+α)=-sinαcos(π/2-α)=sin α
tan(π/2+α)=-cotαtan(π/2-α)=cotα
sin(3π/2+α)=-cosαsin(3π/2-α)=-cosα
cos(3π/2+α)=sinαcos(3π/2-α)=-sinα三角函数表格0到90
tan(3π/2+α)=-cotαtan(3π/2-α)=cotα
(以上k∈Z)
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论