解一元一次方程教案(精选8篇)
解一元一次方程 篇1
一、教学目标
(一).知识与技能
会利用合并同类项解一元一次方程.
(二).过程与方法
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.
(三).情感态度与价值观
开展探究性学习,发展学习能力.
二、重、难点与关键
(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.
(二).难点:会列一元一次方程解决实际问题.
(三).关键:抓住实际问题中的数量关系建立方程模型.
三、教学过程
(一)、复习提问
1.叙述等式的两条性质.
2.解方程:4(x- )=2.
解法1:根据等式性质2,两边同除以4,得:
x- =
两边都加 ,得x= .
解法2:利用乘法分配律,去掉括号,得:
4x- =2
两边同加 ,得4x=
两边同除以4,得x= .
(二)、新授
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.
问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:x+2x+4x=140
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x.
根据分配律,x+2x+4x=(1+2+4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
合并
7x=140
系数化为1
x=20
由上可知,前年这个学校购买了20台计算机.3(2x一4) 9解方程
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系数化为1,得x=6
所以2x=12,3x=18,5x=30
答:甲组12人,乙组18人,丙组30人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.
(三)、巩固练习
1.课本第89页练习.
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得( + )x=7
即 2x=7
系数化为1,得x=
解法2:两边同乘以2,得x+3x=14
合并,得 4x=14
系数化为1,得 x=
(3)合并,得-2.5x=10
系数化为1,得x=-4
2.补充练习.
(1)足球的表面是由若干个黑五边形和白六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑皮块和白皮块各有多少?
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:(1)设每份为x个,则黑皮块有3x个,白皮块有5x个.
列方程 3x+2x=32
合并,得 8x=32
系数化为1,得 x=4
黑皮块为43=12(个),白皮块有54=20(个).
(2)设全书共有x页,那么第一天读了( x+2)页,第二天读了( x-1)页.
本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.
列方程: x+2+ x-1+23=x.
四、课堂小结
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.
五、作业布置
1.课本第93页习题3.2第1、3(1)、(2)、4、5题.
2.选用课时作业设计.
合并同类项习题课(第2课时)
一、解方程.
1.(1)3x+3-2x=7; (2) x+ x=3;
(3)5x-2-7x=8; (4) y-3-5y= ;
(5) - =5; (6)0.6x- x-3=0.
二、解答题.
2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?
3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.
(1)两车同时出发,相向而行,出发多少小时两车相遇?
(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?
4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.
5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分
钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?
答案:
一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11
二、2.705人,设育红小学1995年学生人数为x人,列方程320= x-150.
3.(1)4 小时,设出发后x小时相遇,列方程60x+48x=460.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论