基于C++11的threadpool线程池(简洁且可以带任意多的参
数)
C++11 加⼊了线程库,从此告别了标准库不⽀持并发的历史。然⽽ c++ 对于多线程的⽀持还是⽐较低级,稍微⾼级⼀点的⽤法都需要⾃⼰去实现,譬如线程池、信号量等。线程池(thread pool)这个东西,在⾯试上多次被问到,⼀般的回答都是:“管理⼀个任务队列,⼀个线程队列,然后每次取⼀个任务分配给⼀个线程去做,循环往复。” 貌似没有问题吧。但是写起程序来的时候就出问题了。
废话不多说,先上实现,然后再啰嗦。(dont talk, show me ur code !)
代码实现
#pragma once
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <vector>
#include <queue>
#include <thread>
#include <atomic>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
namespace std
{
#define MAX_THREAD_NUM 256
//线程池,可以提交变参函数或拉姆达表达式的匿名函数执⾏,可以获取执⾏返回值
/
/不⽀持类成员函数, ⽀持类静态成员函数或全局函数,Opteron()函数等
class threadpool
{
using Task = std::function<void()>;
// 线程池
std::vector<std::thread> pool;printf怎么加endl
// 任务队列
std::queue<Task> tasks;
// 同步
std::mutex m_lock;
// 条件阻塞
std::condition_variable cv_task;
// 是否关闭提交
std::atomic<bool> stoped;
//空闲线程数量
std::atomic<int> idlThrNum;
public:
inline threadpool(unsigned short size = 4) :stoped{ false }
{
idlThrNum = size < 1 ? 1 : size;
for (size = 0; size < idlThrNum; ++size)
{ //初始化线程数量
[this]
{ // ⼯作线程函数
while(!this->stoped)
{
std::function<void()> task;
{ // 获取⼀个待执⾏的 task
std::unique_lock<std::mutex> lock{ this->m_lock };// unique_lock 相⽐ lock_guard 的好处是:可以随时 unlock() 和 lock()
this->cv_task.wait(lock,
[this] {
return this->stoped.load() || !this-&pty();
}
); // wait 直到有 task
if (this->stoped && this-&pty())
return;
task = std::move(this->tasks.front()); // 取⼀个 task
this->tasks.pop();
}
idlThrNum--;
task();
idlThrNum++;
}
}
);
}
}
inline ~threadpool()
{
stoped.store(true);
ify_all(); // 唤醒所有线程执⾏
for (std::thread& thread : pool) {
//thread.detach(); // 让线程“⾃⽣⾃灭”
if(thread.joinable())
thread.join(); // 等待任务结束,前提:线程⼀定会执⾏完
}
}
public:
// 提交⼀个任务
// 调⽤.get()获取返回值会等待任务执⾏完,获取返回值
// 有两种⽅法可以实现调⽤类成员,
// ⼀种是使⽤ bind: mit(std::bind(&Dog::sayHello, &dog));
// ⼀种是⽤ mem_fn: mit(std::mem_fn(&Dog::sayHello), &dog)
template<class F, Args>
auto commit(F&& f, Args&&... args) ->std::future<decltype())>
{
if (stoped.load()) // stop == true ??
throw std::runtime_error("commit on ThreadPool is stopped.");
using RetType = decltype()); // typename std::result_of<)>::type, 函数 f 的返回值类型
auto task = std::make_shared<std::packaged_task<RetType()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
); // wtf !
std::future<RetType> future = task->get_future();
{ // 添加任务到队列
std::lock_guard<std::mutex> lock{ m_lock };//对当前块的语句加锁 lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock() place(
[task]()
{ // push(Task{...})
(*task)();
}
);
}
ify_one(); // 唤醒⼀个线程执⾏
return future;
}
//空闲线程数量
int idlCount() { return idlThrNum; }
};
}
#endif
代码不多吧,上百⾏代码就完成了线程池, 并且, 看看 commit, 哈, 不是固定参数的, ⽆参数数量限制! 这得益于可变参数模板.怎么使⽤?
看下⾯代码(展开查看)
#include "threadpool.h"
#include <iostream>
void fun1(int slp)
{
printf(" hello, fun1 ! %d\n" ,std::this_thread::get_id());
if (slp>0) {
printf(" ======= fun1 sleep %d ========= %d\n",slp, std::this_thread::get_id());
std::this_thread::sleep_for(std::chrono::milliseconds(slp));
}
}
struct gfun {
int operator()(int n) {
printf("%d hello, gfun ! %d\n" ,n, std::this_thread::get_id() );
}
};
class A {
public:
static int Afun(int n = 0) { //函数必须是 static 的才能直接使⽤线程池
std::cout << n << " hello, Afun ! " << std::this_thread::get_id() << std::endl;
return n;
}
static std::string Bfun(int n, std::string str, char c) {
std::cout << n << " hello, Bfun ! "<< str.c_str() <<" " << (int)c <<" " << std::this_thread::get_id() << std::endl;
return str;
}
};
int main()
try {
std::threadpool executor{ 50 };
A a;
std::future<void> ff = executormit(fun1,0);
std::future<int> fg = executormit(gfun{},0);
std::future<int> gg = executormit(a.Afun, 9999); //IDE提⽰错误,但可以编译运⾏
std::future<std::string> gh = executormit(A::Bfun, 9998,"mult args", 123);
std::future<std::string> fh = executormit([]()->std::string { std::cout << "hello, fh ! " << std::this_thread::get_id() << std::endl; return "hello,fh ret !"; }); std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::microseconds(900));
for (int i = 0; i < 50; i++) {
executormit(fun1,i*100 );
}
std::cout << " ======= commit all ========= " << std::this_thread::get_id()<< " idlsize="<<executor.idlCount() << std::endl;
std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(3));
<(); //调⽤.get()获取返回值会等待线程执⾏完,获取返回值
std::cout << fg.get() << " " << fh.get().c_str()<< " " << std::this_thread::get_id() << std::endl;
std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(3));
std::cout << " ======= fun1,55 ========= " << std::this_thread::get_id() << std::endl;
executormit(fun1,55).get(); //调⽤.get()获取返回值会等待线程执⾏完
std::cout << " " << std::this_thread::get_id() << std::endl;
std::threadpool pool(4);
std::vector< std::future<int> > results;
for (int i = 0; i < 8; ++i) {
poolmit([i] {
std::cout << "hello " << i << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "world " << i << std::endl;
return i*i;
})
);
}
std::cout << " ======= commit all2 ========= " << std::this_thread::get_id() << std::endl;
for (auto && result : results)
std::cout << () << ' ';
std::cout << std::endl;
return 0;
}
catch (std::exception& e) {
std::cout << "some " << std::this_thread::get_id() << e.what() << std::endl;
}
为了避嫌,先进⾏⼀下版权说明:代码是 me “写”的,但是思路来⾃ Internet,特别是(基本 copy 了这个实现,加上和解释,好东西值得 copy ! 然后综合更改了下,更加简洁)。
接着前⾯的废话说。“管理⼀个任务队列,⼀个线程队列,然后每次取⼀个任务分配给⼀个线程去做,循环往复。” 这个思路有神马问题?线程池⼀般要复⽤线程,所以如果是取⼀个 task 分配给某⼀个 thread,执⾏完之后再重新分配,在语⾔层⾯基本都是不⽀持的:⼀般语⾔的 thread 都是执⾏⼀个固定的 task 函数,执⾏完毕线程也就结束了(⾄少 c++ 是这样)。so 要如何实现 task 和 thread 的分配呢?
让每⼀个 thread 都去执⾏调度函数:循环获取⼀个 task,然后执⾏之。
idea 是不是很赞!保证了 thread 函数的唯⼀性,⽽且复⽤线程执⾏ task 。
即使理解了 idea,代码还是需要详细解释⼀下的。
1、⼀个线程 pool,⼀个任务队列 queue ,应该没有意见;
2、任务队列是典型的⽣产者-消费者模型,本模型⾄少需要两个⼯具:⼀个 mutex + ⼀个条件变量,或是⼀个 mutex + ⼀个信号量。mutex 实际上就是锁,保证任务的添加和移除(获取)的互斥性,⼀个条件变量是保证获取 task 的同步性:⼀个 empty 的队列,线程应该等待(阻塞);
3、atomic<bool> 本⾝是原⼦类型,从名字上就懂:它们的操作 load()/store() 是原⼦操作,所以不需要再加 mutex。
c++语⾔细节
即使懂原理也不代表能写出程序,上⾯⽤了众多c++11的“奇技淫巧”,下⾯简单描述之。
1. using Task = function<void()> 是类型别名,简化了 typedef 的⽤法。function<void()> 可以认为是⼀个函数类型,接受任意
原型是 void() 的函数,或是函数对象,或是匿名函数。void() 意思是不带参数,没有返回值。
2. place_back([this]{...}) 和 pool.push_back([this]{...}) 功能⼀样,只不过前者性能会更好;
3. place_back([this]{...}) 是构造了⼀个线程对象,执⾏函数是拉姆达匿名函数;
4. 所有对象的初始化⽅式均采⽤了 {},⽽不再使⽤ () ⽅式,因为风格不够⼀致且容易出错;
5. 匿名函数: [this]{...} 不多说。[] 是捕捉器,this 是引⽤域外的变量 this指针,内部使⽤死循环, 由cv_task.wait(lock,[this]
{...}) 来阻塞线程;
6. delctype(expr) ⽤来推断 expr 的类型,和 auto 是类似的,相当于类型占位符,占据⼀个类型的位置;auto f(A a, B b) ->
decltype(a+b) 是⼀种⽤法,不能写作 decltype(a+b) f(A a, B b),为啥?! c++ 就是这么规定的!
7. commit ⽅法是不是略奇葩!可以带任意多的参数,第⼀个参数是 f,后⾯依次是函数 f 的参数!(注意:参数要传struct/class
的话,建议⽤pointer,⼩⼼变量的作⽤域) 可变参数模板是 c++11 的⼀⼤亮点,够亮!⾄于为什么是 和 ,因为规定就是这么⽤的!
8. commit 直接使⽤只能调⽤stdcall函数,但有两种⽅法可以实现调⽤类成员,⼀种是使⽤ bind:
mit(std::bind(&Dog::sayHello, &dog));⼀种是⽤ mem_fn: mit(std::mem_fn(&Dog::sayHello), &dog);
9. make_shared ⽤来构造 shared_ptr 智能指针。⽤法⼤体是 shared_ptr<int> p = make_shared<int>(4) 然后 *p == 4 。智能
指针的好处就是,⾃动 delete !
10. bind 函数,接受函数 f 和部分参数,返回currying后的匿名函数,譬如 bind(add, 4) 可以实现类似 add4 的函数!
11. forward() 函数,类似于 move() 函数,后者是将参数右值化,前者是... 肿么说呢?⼤概意思就是:不改变最初传⼊的类型
的引⽤类型(左值还是左值,右值还是右值);
12. packaged_task 就是任务函数的封装类,通过 get_future 获取 future ,然后通过 future 可以获取函数的返回值
(());packaged_task 本⾝可以像函数⼀样调⽤ () ;
13. queue 是队列类, front() 获取头部元素, pop() 移除头部元素;back() 获取尾部元素,push() 尾部添加元素;
14. lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock(),是 c++ RAII 的 idea;
15. condition_variable cv; 条件变量,需要配合 unique_lock 使⽤;unique_lock 相⽐ lock_guard 的好处是:可以随时
unlock() 和 lock()。 cv.wait() 之前需要持有 mutex,wait 本⾝会 unlock() mutex,如果条件满⾜则会重新持有 mutex。16. 最后线程池析构的时候,join() 可以等待任务都执⾏完在结束,很安全!
Git
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论