Our reference:JALCOM28611P-authorquery-v11
Dear Author,
Please check your proof carefully and mark all corrections at the appropriate place in the ,by using on-screen annotation in the PDF file)or compile them in a separate list.Note:if you opt to annotate thefile with software other than Adobe Reader then please also highlight the appropriate place in the PDFfile.To ensure fast publication of your paper please return your corrections within48hours.
For correction or revision of any artwork,please consult www.elsevier/artworkinstructions.
Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted byflags in the proof.Click on the‘Q’link to go to the location in the proof.
Location in
article
Q1
Thank you for your assistance.
Highlights
The solidification path of AISI 304stainless steel has been investigated. The mechanism of three-phase reaction was confirmed as peritectic not eutectic. The retained delta-ferrite is the result of incomplete peritectic
reaction.
1
3Origin of the lathy ferrite in AISI 304stainless steel during directional 4
solidification
567J.W.Fu ⇑,Y.S.8Institute of Metal Research,910121314151617181920212223
24252627282930313233
34
3536373839404142434445464748495051525354555657585960now,the actual mechanism of three-phase reactions is still not 61
clear,and most often it is referred to as peritectic/eutectic reaction 6263646566
67686970717273747576777879808182
838485304stainless steel at three-phase (L +d +c )reaction stage.86According to the results in Fig.1,some typical solidification char-87acteristics can be obtained.Firstly,primary lathy delta-ferrite is ar-88ranged in an entangled cluster and is enveloped by austenite.89
Secondly,the microstructure,consisting of lathy delta-ferrite and
0925-8388/$-see front matter Ó2013Published by Elsevier B.V./10.1016/j.jallcom.2013.05.107
Corresponding author.Tel.:+862423971727;fax:+862423844528.
E-mail address:jwfu@imr.ac (J.W.Fu).
Q1Please cite this article in press as:J.W.Fu ,Y.S.Yang ,J.Alloys Comp.(2013),/10.1016/j.jallcom.2013.05.107
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
micrograph of lathy ferrite during solidification indicating
transformation with arrows.(a)TEM darkfield image and(b)Selected area diffraction patterns by TEM.(a)austenite with[01
ferrite with[001]zone axis.
Please cite this article in press as:J.W.Fu,Y.S.Yang,J.Alloys Comp.(2013),/10.1016/j.jallcom.2013.05.107
154experimental results do not support this hypothesis.Fig.2shows 155the darkfield and brightfield TEM images of lathy delta-ferrite 156during solidification.Selected area diffraction patterns indicate 157that lathy phase and the matrix are identified as delta-ferrite and 158austenite,respectively,as shown in Fig.3.Fig.2a indicates clearly 159that the tip of the lathy delta-ferrite deviates from the ellipsoid 160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190 stainless steel has been revealed using directional solidification
191 and liquid quenching.The mechanism of three-phase reaction dur-
192 ing solidification has been clarified.It is confirmed that primary
193 delta-ferrite precipitates from the meltfirst during solidification.
194 At the three-phase reaction stage,austenite is formed through
195
196
197tectic reaction and the morphology of delta-ferrite is changed.198After peritectic reaction is completed,the retained liquid trans-199forms into austenite directly.200Acknowledgements
201This work was financially supported by the National Natural 202Science Foundation of China and Shanghai Baosteel Group Corpo-203ration
51004095).204References
205[1]H.K.D.H.Bhadeshia,206[2]J.A.Brooks,A.W.207[3]A.Hunter,M.Ferry,208[4]M.F.Zhu,C.P.Hong,209[5]H.Fredriksson,210[6]H.Inoue,T.Koseki,211[7]D.Baldissin,L.212[8]
D.Baldissin,M.2131002.
214[9]K.Rajasekhar,C.S.215
(1997)53–65.
216[10]J.A.Brooks,J.C.Williams,A.W.Thompson,Metall.Trans.A14(1983)1271–
reaction to a book or an article2171281.
218[11]N.Suutala,T.Takalo,T.Moisio,Metall.Trans.A11(1980)717–725.219[12]S.A.David,G.M.Goodwin,D.N.Braski,Weld.J.58(1979)330s–336s .
220[13]J.W.Fu,Y.S.Yang,J.J.Guo,J.C.Ma,W.H.Tong,J.Cryst.Growth 311(2008)132–
221136.
222[14]J.W.Fu,Y.S.Yang,J.J.Guo,J.C.Ma,W.H.Tong,J.Mater.Res.24(2009)2385–
2232390.
224[15]J.C.Ma,Y.S.Yang,W.H.Tong,Y.Fang,Y.Yu,Z.Q.Hu,Mater.Sci.Eng.A 444
225(2007)64–68.
226[16]X.W.Hu,S.M.Li,S.F.Gao,H.Z.Fu,Alloys Comp.501(2010)110–114.
227[17]Li,H.Zhong,L.Liu,H.Z.Fu,J.Alloys Comp.
228461(2008)121–127.
229[18]Y.Q.Su,L.S.Luo,J.J.Guo,X.Z.Li,H.Z.Fu,J.Alloys Comp.474(2009)L14–L17.230[19]M.Vandyoussefi,H.W.Kerr,W.Kurz,Acta Mater.45(1997)4093–4105.
231Sci.Eng.A 173(1993)361–
232233129–164.
234Y.H.Zhou,Scr.Mater.57(2007)
235236.
237Fu,Appl.Phys.Lett.89(2006).
238239.
240
4
J.W.Fu,Y.S.Yang /Journal of Alloys and Compounds xxx (2013)xxx–xxx
Please cite this article in press as:J.W.Fu ,Y.S.Yang ,J.Alloys Comp.(2013),/10.1016/j.jallcom.2013.05.107

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。