大规模风电并网背景下的电力系统旋转备用优化研究
摘要:随着可再生能源的快速发展,大规模风电的并网已经成为现代电力系统中的一项关键技术。但是,由于风速变化大、不可预知性强等因素,大规模风电的并网对电力系统的稳定性和安全性产生了挑战。为保障电力系统的稳定运行,旋转备用是一种重要的安全保障措施。本文采用电力系统旋转备用优化模型,针对大规模风电并网下的电力系统运行问题,探讨了电力系统中旋转备用的设计原则和具体方法,并研究了大规模风电并网下的电力系统旋转备用优化策略。通过实例仿真分析,结果表明,本文提出的电力系统旋转备用优化模型具有一定的可行性和优越性,能够有效提高电力系统的稳定运行能力和安全性,为大规模风电并网下的电力系统运行提供了一定的理论参考和实践指导。
关键词:电力系统;大规模风电并网;旋转备用;优化研究;稳定性。
1.简介
随着可再生能源的迅速发展,尤其是风电的快速发展,大规模风电的并网已经成为现代电力系统中的一项关键技术。尽管大规模风电在环保和节能方面具有明显的优势,但是由于其特殊的
环境限制和天气变化等因素的影响,导致大规模风电的输出存在较大的波动性和不可预知性,这对电力系统的稳定性和安全性产生了挑战。
为了保证电力系统的安全运行,旋转备用作为一种非常重要的安全保障措施,在电力系统中发挥着至关重要的作用。旋转备用是指在电力系统运行过程中,通过调节机组的负荷水平保持一定的运行速度,以达到承担突发负荷波动的能力的技术措施。
然而,大规模风电的并网给旋转备用的规划和运行带来了不小的挑战。因为风电的接入导致了系统负载和负荷的波动,再加上风速不确定性,对旋转备用的设计和优化带来了挑战。
因此,本文将研究在大规模风电并网下的电力系统旋转备用优化问题,探讨由于风电产生的波动对旋转备用的运行产生的影响及如何利用旋转备用维护电力系统的稳定运行。本文将从电力系统的旋转备用优化模型出发,结合仿真分析的方法,研究大规模风电并网下的电力系统旋转备用优化策略。
reactivepower2.电力系统旋转备用优化模型
电力系统旋转备用优化模型主要包括系统稳定裕度指标和旋转备用量两个方面。其中,系统
稳定裕度是指电力系统在面对不可预知的电力故障和负荷波动时,能够保持稳定运行的能力。而旋转备用量是指即使发生突发负荷波动,电力系统仍然能够通过旋转备用来支持系统的稳定运行的能力。
针对大规模风电并网下的电力系统,本文将系统稳定裕度指标设定为最大化系统发电能力的上限,旋转备用量设定为在风电波动条件下,保障系统最小旋转备用生成的最小值。通过以上对电力系统旋转备用优化模型的设定,本文将探讨如何在大规模风电并网的条件下,进行电力系统旋转备用的有效运行和优化。
3.大规模风电并网下的电力系统旋转备用优化策略
基于电力系统旋转备用优化模型的设定,本文提出了面向大规模风电并网的电力系统旋转备用优化策略。该策略主要包括以下三个方面。
(1)确定分配负荷水平。首先,针对大规模风电并网下的电力系统,需要确定系统中不同机组的分配负荷。由于风电的会导致负荷和负载波动,因此运用客户满意度的方法,对不同负荷端口的负载进行分配。
(2)优化旋转备用的规划。基于以上对分配负荷的确定,本文将设计电力系统的旋转备用规划方案。首先,通过对系统风速的建模和预测,确定风电波动对系统稳定性的影响。然后,运用基于模型预测的控制策略,对旋转备用进行优化规划。
(3)旋转备用的实施和监控。最后,根据以上的优化规划,将旋转备用分配给各个机组,并进行相应的实施和监控。通过实时监控旋转备用的运行情况,针对不同的情况,采取不同的优化调整措施。
4.仿真分析
为了验证本文提出的大规模风电并网下的电力系统旋转备用优化策略的有效性,本文对一个典型的电力系统进行了仿真分析。分析结果表明,本文提出的电力系统旋转备用优化模型和优化策略,能够有效提高电力系统的稳定运行能力和安全性,为大规模风电并网下的电力系统运行提供了一定的理论参考和实践指导。
5.总结
本文主要针对大规模风电并网下的电力系统旋转备用优化问题进行了深入的研究。通过电力
系统旋转备用优化模型的设定,探索了旋转备用的设计原则和方法,提出了针对大规模风电并网的电力系统旋转备用优化策略。仿真分析结果表明,本文提出的电力系统旋转备用优化模型和优化策略,能够有效提高电力系统的稳定运行能力和安全性。这为电力系统运行提供了一定的理论参考和实践指导,对促进大规模风电并网的稳定运行和发展具有重要意义。
Abstract:
With the development of renewable energy, wind power has become one of the most important sources of clean energy. However, the integration of large-scale wind power into the power grid brings new challenges to the stability and security of the power system. One of the key issues is the optimal deployment of rotating reserve. In this paper, we propose an optimization model and strategy for rotating reserve allocation in large-scale wind power integrated power system. The model takes into account the influence of wind power fluctuations on system stability and adopts a model-based predictive control strategy to optimize the allocation of rotating reserve. The simulation results show that our proposed approach can effectively enhance the stability and security of the power system, providing
a theoretical reference and practical guidance for the operation of large-scale wind power integrated power system.
Introduction:
As a green and renewable energy, wind power has attracted increasing attention and investment in recent years. The large-scale integration of wind power into the power grid not only reduces the reliance on fossil fuels but also contributes to the reduction of greenhouse gas emissions. However, wind power integration also poses new challenges to the stability and security of the power grid. Due to the intermittent and unpredictable nature of wind power, fluctuations and imbalances may occur in the power system, which can lead to potential risks such as frequency and voltage instability, blackout, and even cascading failures. Therefore, optimizing the allocation of rotating reserve is crucial for ensuring the stable and secure operation of the power system.
Literature Review:
In recent years, a considerable number of studies have been conducted on the allocation of rotating reserve in power system. For example, He et al. proposed a chance-constrained programming model for the allocation of reserve generation, aiming to minimize the operating costs and satisfy the system reliability requirements. Li et al. developed a two-stage stochastic programming model for reserve scheduling, accounting for the uncertainty of wind power and load, and tested the model on a power system with wind power integration. Wang et al. studied the economic dispatch and reserve scheduling problem considering the ramping constraints of thermal units and wind power, and proposed a mixed-integer linear programming model to minimize the operating cost while satisfying the reserve requirements. Although these studies provide valuable insights into the allocation of rotating reserve, the existing literature has limitations in addressing the challenges posed by the large-scale integration of wind power, such as the uncertainty and variability of wind power output and the impact of wind power fluctuations on system stability.
Methodology:
In this paper, we propose an optimization model and strategy for rotating reserve allocation in large-scale wind power integrated power system. The methodology is divided into four steps: system modeling, rotating reserve allocation optimization, implementation, and monitoring.
Firstly, the system model is established to describe the large-scale wind power integrated power system. The model takes into account the influence of wind power fluctuations on system stability, such as the deviation of active power and reactive power caused by wind power fluctuations.
Secondly, a rotating reserve allocation optimization model is developed. The model adopts a model-based predictive control strategy to optimize the allocation of rotating reserve. The predictive control algorithm is used to predict the wind power output and determine the optimal rotating reserve allocation in advance.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论