附件2
论文中英文摘要格式
作者姓名:聂秋月
论文题目:大气压冷等离子体射流实验研究
作者简介:聂秋月,女,1982年9月出生,2005年9月师从于大连理工大学王德真教授,于2010年6月获博士学位。
中文摘要
reactive materials studies
大气压冷等离子体射流是近年来兴起的一种新的大气压低温等离子体放电技术,是目前国际上等离子体科学与技术领域的研究热点之一。其等离子体空间富集的离子、电子、激发态原子、分子及自由基等都是活泼的反应性物种,这些活性粒子数量大、种类多、活性强,易于和所接触的材料表面发生反应, 因此在材料表面处理方面有许多重要应用。和传统方法相比, 大气压冷等离子体射流表面处理具有操作简单快捷、成本低廉、无废弃物、无污染等显著优点,无论在传统的材料制造、加工和改性等应用领域,还是在新兴的生物医学工程、环境工程、等离子体化工等领域都表现出了良好的应用前景,特别是在温度敏感材料(如生物材料)、复杂形状工件等的表面处理方面,更是显示出了独特的技术优势。
发展等离子体源、诊断等离子体参数、研究等离子体产生与发展的基本物理过程一直都是等离子体科学与技术研究中的重要方向。本文以大气压冷等离子体射流为重点,开展了以下工作:
1.发展了一种毫米量级毛细管针-环电极大气压冷等离子体射流装置,通过考察其电学、光学特性,研究了放电发展过程及等离子体性质。结果表明:由于在电极设计上采用了曲率较大的毛细管针电极,因此在功率电极附近易于产生较强电场,可明显降低等离子体射流产生及维持电压;此外,由于环电极的引入,放电区间将同时存在两种不同的放电模式(即毛细管针电极尖端附近发生的放电以及毛细管针电极和接地环电极之间发生的介质阻挡放电),与此同时,在下游端环电极的作用下,放电区将形成一个纵向电场,更利于将放电区产生的等离子体引出,形成等离子体射流。与传统的毛细管针电极射流装置及单环电极射流装置相比,该混合型结构可有效降低射流源工作电压,增强放电强度,提高活性粒子数量。
2.设计了一种简易的大气压悬浮电极冷等离子体射流发生器,并对其等离子体特性进行了研究。实验以氩气为工作气体,在常压开放空气环境中获得了均匀稳定的冷等离子体射流,具有温度低、长度长、产生及维持电压低、连续工作时间长等特点。结果表明:悬浮电极的引入可有效优化射流特性,由于不需使用外接器件,在简化电路构造的同时,更降低了能量在外回路的损耗,使能量更易集中在射流产生通道,提高了能量利用率;此外,悬浮电极还可通过控制电荷积累有效控制放电强度,增强射流稳定性,防止射流热化等。
3.在小尺度毛细管针-环电极射流源基础上,研制了一种增强型双频大气压冷等离子体射流装置。该射流装置由上游毛细管针电极、中间区接地环电极以及下游平板电极组成,采
用双频电源驱动。其主要物理机制为:上游毛细管针电极与5.5 MHz射频电源相连,能够在
放电开启时为放电系统提供足够高的种子电子密度,下游平板电极与30 kHz交流电源相连,
可有效延伸射频等离子体空间区域,在不显著改变等离子体温度的同时可明显增强下游端等
离子体密度。这一研究有望为大气压冷等离子体射流密度、温度分别独立控制提供一种可能。
4.发现了一维较大尺度大气压冷等离子体射流的三种放电模式:弥散放电、自组织斑图、丝状放电;研究了外加电压、电源频率、介质管尺度、以及气体流量对放电模式和斑图演化
的影响;探讨了这一现象产生的物理机制。这一发现进一步丰富了气体放电斑图理论,同时
该斑图的近似一维排列及随特定参数稳定演化过程可以为斑图演化的自组织理论分析提供一
个简化模型。
5.开展了多管阵列化初步实验,以小尺度毛细管针-环电极大气压冷等离子体射流装置为基
本单元,研究了一种适用于不规则复杂形状材料表面处理的“类蜂巢”结构较大面积冷等离
子体射流阵列,具有宏观温度低、均匀性好、稳定性强、有效面积大、活性粒子数量多、适
用面广、安全可靠等特点。在此基础上,以七针六角阵列为基本模型,通过光学、电学诊断
及灭菌实验,深入研究了射流阵列的放电演化过程及其物理机理,为今后进一步开展大规模
冷等离子体射流阵列研究打下了良好基础。
关键词:大气压非平衡态等离子体;介质阻挡放电;大气压冷等离子体射流;射流阵列
Experimental studies on atmospheric pressure cold plasma jets
Nie Qiuyue
ABSTRACT
Cold plasma jets generated in atmospheric pressure discharges represent a rapidly developing technology of non-thermal atmospheric pressure plasma sources, which have attracted much attention in recent years. Their desirable properties, including high reactive chemical species (e.g. ions, electron
s, excited atoms, molecules, and free radicals), low temperature, simplicity of operation, faster treatment, lower cost, and chemical waste free, have made them unique and promising for a number of important industrial applications, such as biomedical engineering, environmental engineering, plasma chemistry, and material processing, especially materials which are sensitive to temperature. Besides, due to the spatial separation of their generation from their application regions, cold plasma jets are less influenced by the downstream sample, which make them ideally applicable for material with uneven surfaces particularly. To improve the performance
of atmospheric pressure cold plasma jets and understand their characteristics better, the following work is done in this paper:
1. A hybrid capillary-ring cold atmospheric jet is proposed, in which the barrier-jet discharge
plasma is initiated between a powered capillary electrode with a helium flow and a downstream concentric grounded ring electrode. The characteristics of the jet discharge are studied by means of the electrical and spectroscopic diagnosis. And the results demonstrate that low breakdown voltage and high atomic oxygen production are achieved simultaneously, and these features are mainly attributed to the hybrid configuration of capillary-ring electrodes.
2. A simple device with a floating electrode configuration to generate a cold atmospheric argon plasma jet is studied. The floating electrode plasma jet has identified a number of desirable features including low gas temperature, low operation voltage, and high stability. The results show that the improvement of the electrode configuration is effective in concentrating efficiently electrical energy into the discharge channel as well as controlling directly the discharge intensity of the jet, therefore making the generation of the argon plasma jet simpler and more effective.
3. A dual-frequency cold atmospheric pressure plasma jet is studied as a possible route to separate control of basic plasma parameters particularly plasma density, plasma plume length and gas temperature. With spatially separate application of two excitation frequencies, one at 5.5 MHz and the other at 30 kHz, plasma dynamics exhibit interaction between influences by the two individual excitation frequencies. It is shown that the upper stream discharge at 5.5 MHz feeds abundant electrons to the downstream plasma plume sustained at 30 kHz for the latter to acquire high plasma density and long plume length without much increase in its gas temperature.
4. A hitherto unreported class of self-organized pattern is observed in a wide atmospheric pressure plasma jet with a dielectric barrier discharge (DBD) configuration established in a helium flow. Under different experimental conditions, the plasma jet has been shown to evolve through three modes havin
g diffuse, regularly self-organized and completely disordered discharges respectively. The influences of experimental conditions on the mode transition are investigated, and the reason for the pattern formation is discussed. These observations will enrich the understanding of pattern formation in DBDs and give additional information for developing a physical model of pattern formation in DBD systems.
5. The jet array with a group of atmospheric pressure cold plasma jets densely arranged in a honeycomb-like configuration is studied, in which a hybrid capillary-ring cold atmospheric jet is used as the element component. It is shown that the jet array is applicable to produce uniform plasma over a larger area and presents high jet density, good jet-jet uniformity, and robust plasma stability. Besides, a 7 jet array is especially studied by means of the electrical and spectroscopic diagnosis as well as the test of sterilization, which provides possible insights to better control the jet-jet interactions and further the study of scalable plasma jet array.
Key words: Atmospheric pressure non-equilibrium plasma; Dielectric barrier discharge; Atmospheric pressure cold plasma jets; Scalable plasma jet array

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。