世界最新医学信息文摘 2021年第21卷第23期101
投稿邮箱:sjzxyx88@126
·综述·
线粒体氧化应激与肿瘤的研究进展
韩晓丹1,黄国锦1,2(通信作者*)
(1.桂林医学院附属医院呼吸疾病实验室,广西 桂林 541000;2. 桂林医学院广西肝损伤与修复分子医学重点实验室,
广西 桂林 541000;)
摘要:线粒体在肿瘤生物能学中起关键作用,被认为是抗肿瘤的潜在靶标。线粒体产生的活性氧(reactive oxygen species, ROS )在生理浓度时,是维持生命活动的主要介质,但在病理状态下,其浓度升高后可打破抗氧化保护机制的平衡,导致氧化应激的发生。氧化应激可以引起细胞的损伤,从而参与包括肿瘤在内的一些与细胞损伤和死亡相关的疾病。本文将从线粒体氧化应激通过调控细胞信号传导通路、与腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK )相互作用及调节自噬等方面,系统
讨论线粒体氧化应激在肿瘤发生发展中的作用,进一步讨论线粒体氧化应激与肿瘤的之间的关系并作一综述。关键词:线粒体;氧化应激;活性氧;肿瘤
中图分类号:R73 文献标识码:A DOI :10.3969/j.issn.1671-3141.2021.23.035
本文引用格式:韩晓丹,黄国锦.线粒体氧化应激与肿瘤的研究进展[J].世界最新医学信息文摘,2021,21(23):101-103.
Research Progress of Mitochondrial Oxidative Stress and Tumor
HAN Xiao-dan 1,HUANG Guo-jin 1,2*
(1. Laboratory of Respiratory Diseases, the Affiliated Hospital of Guilin Medical University, Guilin Guangxi 541000; 2. Guangxi
Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin Guangxi 541000)ABSTRACT: Mitochondria play a key role in tumor bioenergetics and are considered as potential targets for anti-tumor therapy. Mitochondrial metabolites, especially reactive oxygen species (ROS), are the main mediators for maintaining life activities at physiological concentrations. However, under pathological conditions, an increase in the concentration of reactive oxygen species br
eaks the balance of antioxidant protection mechanisms, which will cause oxidative stress. Oxidative stress can cause cell damage and participate in some diseases related to cell injury and death, including tumors. This article will systematically discuss the role of mitochondrial oxidative stress in tumorigenesis and development from the aspects of regulating cell signal transduction pathway, interacting with adenylate activated protein kinase (AMPK) and regulating autophagy, and further discuss the relationship between mitochondrial oxidative stress and tumor treatment.
KEY WORDS: mitochondria; oxidative stress; reactive oxygen species; tumor
0 引言
在正常的生理情况下,细胞主要依靠葡萄糖进入细胞后通过有氧氧化和无氧酵解产生ATP 来供能[1,2]。有氧氧化是在有氧条件下葡萄糖分解并产生乙酰辅酶A,通过线粒体呼吸链反应,产生大量ATP 达到供能目的,是细胞最主要的功能形式。而无氧氧化则是葡萄糖直接在无氧气参与的情况下
转化为乳酸,仅释放极少能量[3-5]。1956年,
Warburg 开创性地发现癌细胞在有氧条件下仍进行糖酵解,将葡萄糖发酵成为乳酸,而非完全氧化供能。这一发现使得人们开始关注线
粒体在肿瘤发生过程中的作用[6]。在癌细胞中,
线粒体的生物学功能能够使其在恶劣环境中适应并生存。本文就线粒体氧化应激与肿瘤发生之间的关系展开综述,进一步了解肿瘤发生过程中线粒体生物学功能的发生机制。
1 线粒体氧化应激与活性氧产生
线粒体是一种存在于大多数真核细胞中的半自主细胞
器,是细胞产能的场所。此外,它能够产生活性氧(reactive oxygen species , ROS)、氧化还原分子和代谢产物,调节细胞信号传导和细胞死亡,以及生物合成代谢物。以上诸多功能使线粒体在正常生理环境下成为重要的细胞应激传感器,使细胞能够适应微环境生存。
活性氧多由体内正常的生理代谢反应产生,包括以
自由基形式存在的超氧阴离子自由基(O 2-·)和羟基自由基(OH ·),以及以非自由基形式存在的中间代谢产物过氧化
氢(H 2O 2)等[7]。线粒体是活性氧产生的重要场所,
多达1%的线粒体O 2消耗量用于生产超氧化物[8,9]
。此外,
线粒体中仍具有多种中和活性氧的抗氧化剂途径,包括超氧化物歧化
酶(Superoxide dismutase 2,SOD 2)
、谷胱甘肽、硫氧还蛋白和过氧化物酶。正常生理状态下,活性氧通常保持在低浓度水平,并可通过信号传导参与细胞调节,维持生命活动。而在病
理状态下,其浓度的升高则会打破抗氧化保护机制的平衡,导致氧化应激的发生从而引起细胞损伤与生理功能上的障碍。
2 线粒体氧化应激与肿瘤发生
在早期研究中发现,癌细胞中具有高水平的活性氧存在。活性氧通过线粒体电子传递链(electron transport chain,ETC)产生,在肿瘤发生过程中,由于癌基因信号、电子传递链突变以及低氧环境等因素的影响,都可因反应加剧导致其产量增多。大量活性氧的产生将促进蛋白质、DNA 及脂质大分子的氧化,使得基因组不稳定,从而进一步促进转化。因此作出假设,猜测活性氧升高可促进肿瘤的发生,相应的,抑制活
性氧可能成为肿瘤的一种途径[10]
。但是在后续的研究中人们发现了其中更加复杂化的关系,活性氧可刺激信号传导与增殖,同时使相应的抗氧化剂途径得到上调,阻止活性氧介导的细胞毒性,甚至有可能促进肿瘤细胞的生存[11,12]。
2.1 线粒体氧化应激调节信号通路
许多研究证明,活性氧可以通过引起可逆的转录后蛋白
修饰来调控信号通路。具体来说,过氧化氢可以氧化半胱氨酸残基上的硫醇基团(-SH)形成磺胺酸(-SOH),后者与谷胱甘肽反应后谷胱甘肽化(- SSG),与邻近的硫醇形成二硫键(- SS -),或与酰胺形成磺基酰胺(- SN -)[13]。每一种修饰都可以改变靶蛋白的活性,从而改变其在信号通路中的功能。另外,活性氧也可以通过这种方式调控磷酸酶,因其具有反应性半胱氨酸,可通过可逆性地氧化催化结构域,磷酸酶似乎可以通过这种方式受到活性氧的调控,因为它们的催化结构域具有活性的半胱氨酸,可被可逆氧化抑制去磷酸化活性[14]。
抑癌基因PTEN(phosphatase and tensin homolog deleted on chromosome ten)是肿瘤抑制磷酸酶和张力蛋白同源物,具有脂质和蛋白质磷酸酶活性。同时,PTEN 有双重特异性蛋白酪氨酸磷酸酶的作用,且可以优先催化磷酸肌醇底物的去
Copyright©博看网 www.bookan. All Rights Reserved.
World Latest Medicine Information (Electronic Version) 2021 Vo1.21 No.23
投稿邮箱:sjzxyx88@126
102
磷酸化。磷脂酰肌醇-3,4,5-三磷酸(phosphatidylinositol-3,4,5-bisphosphate,PIP3)是蛋白激酶B(protein kinase B,
PKB/Akt)的有效激活剂,PTEN 可使磷脂酰肌醇-3,4,5-三磷酸(phosphatidylinositol-3,4,5-bisphosphate,PIP3)磷酸化,从而抑制了Akt 的活性。而在许多肿瘤细胞中,活性氧升高后,过氧化氢可通过氧化抑癌基因PTEN 活性位点上的半胱氨酸残基使其失活,形成二硫键,从而阻止PTEN 抑制磷酸肌醇3-激酶(phosphatidylinositide 3-kinase,PI3K)通路。
磷酸肌醇3-激酶是一种普遍存在于胞内的脂类激酶,在细胞增殖、分化、凋亡等过程中起到重要的调节作用。磷酸肌醇3-激酶通路在许多癌症中被过度激活,其激活可促进细胞
的存活与增殖,并增加细胞迁移性[15]
。生长因子结合并激活其受体后,激活的受体通过激活磷酸肌醇3-激酶的催化亚基p110,使磷酸肌醇(
phosphoinositide,PI)磷酸化,最终激活Akt。Akt 的激活可通过调节磷酸肌醇3-激酶通路,促进细胞增殖并抑制细胞凋亡。PTEN 的半胱氨酸残基由于过氧化氢的氧化而失活,磷酸肌醇3-激酶信号通路即因失活的PTEN 而激活。激活的信号通路可通过使糖原合成的酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)磷酸化导致其活性降低,促进丙酮酸脱氢酶和α-酮戊二酸脱氢酶复合体的生成,使得活性氧
生成增加,从而促进肿瘤细胞的生存与增殖
[16,17]
。 细胞内活性氧水平对磷酸肌醇3-激酶通路亦可以产生影响。有研究证实,活性氧可氧化PTEN 上的活性位点半胱氨酸,使其与另一种蛋白内半胱氨酸形成二硫键,以此使得
PTEN 失活、磷酸肌醇3-激酶通路的永久激活
[18-20]
。线粒体活性氧(mitochondrial reactive oxygen species, mROS)亦可抑制PTEN 并激活Akt。除此之外,活性氧还可抑制蛋白磷酸酶2A(protein phosphatase 2A,PP2A)和蛋白酪氨酸磷酸酶1B(proteintyrosinephosphatase 1B,PTP1B)等磷酸酶的
活性
[21,22]
。 正常情况下,蛋白磷酸酶2A 与蛋白酪氨酸磷酸酶1B 可通过去磷酸化抑制Akt 活性,当活性氧抑制了二者的
去磷酸化活性,其对于Akt 的抑制则失效[23-25],
从而通过上调Akt 信号传导,达到促进肿瘤细胞的生长与增殖的作用。
2.2 线粒体氧化应激通过与腺苷酸活化蛋白激酶相互
作用
在正常人体生理情况下,细胞不断协调其新陈代谢,以满足其能量需求并响应营养物质的使用。腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)是高度保守的丝氨酸/苏氨酸蛋白激酶复合物,其作为一种代谢传感器,联接许多分解代谢和合成代谢信号通路,以维持适当的细胞内三磷酸腺苷水平,帮助维持细胞能量稳态[26,27]。腺苷酸活化蛋白激酶支持肿瘤发生与代谢氧化变化之间的紧密联系,已有越来越多的研究表明腺苷酸活化蛋白激酶与线粒体之间存在相互影响和作用,这与癌症的发展也有相关。已有研究提示抑制腺苷酸活化蛋白激酶激活可能促进并维持癌症的发生[28],
其磷酸化水平降低的肿瘤不良预后的可能性增加[29],
表明腺苷酸活化蛋白激酶活性降低可能会使肿瘤细胞更具侵略性。
最近有研究表明,腺苷酸活化蛋白激酶和线粒体活性
氧之间可以互相调节[30]。一方面,
线粒体活性氧可通过直接氧化或激活共济失调毛细血管扩张突变基因(ataxia telangiectasia-mutated gene, ATM)等来直接或间接激活腺苷
酸活化蛋白激酶
[31,32]
。另一方面,腺苷酸活化蛋白激酶可以通过上调线粒体解偶联蛋白2(Uncoupling protein 2,UCP2)
表达或调节自噬来抑制线粒体活性氧生成[33-35]。因此,
线粒体活性氧或许可通过与腺苷酸活化蛋白激酶的相互调节,在肿瘤发生发展的病理过程中起到一定的作用。
2.3 线粒体活性氧通过调节自噬影响肿瘤发生发展
在低氧、自噬、免疫和细胞分化等生理状况下,活性氧可
以作为促进细胞适应应激的信号相关分子[36]
,
也可以作为线粒体自噬的有效诱导剂[37,38]。并且有研究发现,活性氧可通
过信号通路诱导自噬[39]
。
自噬是一种细胞内溶酶体降解过程,可通过不断清除与回收受损的蛋白质及细胞器控制蛋白质/细胞器质量[39-41]。功能异常的线粒体通过自噬被清除并进入再循环,称为线粒
体自噬
[42,43]
。
如果线粒体自噬被抑制,当细胞内总线粒体及受损线粒体数目增加,将会积累线粒体活性氧[44]。另外,
饥饿诱导的自噬受线粒体活性氧的调节[40]
。有研究发现,
饥饿导致磷酸肌醇3-激酶活化,从而诱导线粒体活性氧,线粒体活性氧随后氧化并灭活半胱氨酸蛋白酶Atg4(Autophagy
Related 4)以促进自噬[45,46]。因此,
线粒体活性氧和线粒体自噬可以形成一个反馈回路,线粒体活性氧诱导线粒体自噬,再通过减少线粒体数量限制活性氧的进一步产生。
虽然目前机制尚不明确,但在某些情况下,自噬可以导致自噬性细胞死亡。自噬性细胞死亡(Autophagic cell death)是非凋亡细胞死亡的主要方式之一,是由过氧化氢酶的选择性降解导致过氧化氢的大量积累,随后可能由于非特异性氧化
损伤而导致细胞死亡[47]
。而过氧化氢来源于线粒体,
可通过增加线粒体活性氧直接诱导自噬性细胞死亡[48]。因此,
线粒体活性氧在低水平的情况下,可通过诱导自噬在饥饿状态下分配肿瘤细胞内资源促进肿瘤细胞存活,而在高水平的情况下,则可在无法生存时促进自噬性细胞死亡。
3 线粒体氧化应激与肿瘤的
活性氧参与许多细胞代谢和信号传导过程[49],并被认为
与疾病有关,特别是在致癌和衰老中
[50,51]
在正常的生理条件下,人体细胞内的线粒体可产生活性氧,即线粒体活性氧。目前已有研究证实,致癌突变、线粒体突变均可促进肿瘤细胞内的线粒体活性氧生成。致癌基因如Ras、Akt 等可分别通过促进线粒体代谢及抑制活性氧清除导致线粒体活性氧水平升
高[52],
而一些抑癌基因如p53则可通过抑制线粒体活性氧生成介导肿瘤抑制[47,53]。线粒体突变则可通过上调线粒体活性
氧水平介导调控肿瘤细胞的增殖[54],
提高肿瘤在活体中的成瘤能力及转移能力
[55,56]
。因此,活性氧可通过参与介导肿瘤细胞内的信号通路、改变肿瘤细胞的新陈代谢以及参与调控缺氧诱导因子途径等影响肿瘤的发生和转移。而当肿瘤细胞内的线粒体活性氧水平降低至不足以通过激活上述途径诱导肿瘤细胞生存、增殖及转移时,可以抑制肿瘤的生长。
如今已有许多研究表明,相较于正常细胞而言,肿瘤细胞无论是活性氧还是抗氧化水平均相对偏高,从而也更容易受到活性氧水平的影响。因此,靶向调控线粒体活性氧在肿瘤细胞中的水平,或许可以为肿瘤的提供新的策略。
参考文献
[1]
Colburn T D, Holdsworth C T, Craig J C, et al. ATP-sensitive K+ Channel Inhibition in Rats Decreases Kidney and Skeletal Muscle Blood Flow Without Increasing Sympathetic Nerve Discharge[J]. Respiratory Physiology & Neurobiology, 2020,278: 103444.
[2] Usher S G, Ashcroft F M, Puljung M C. Nucleotide inhibition of the pancreatic ATP-sensitive K+ channel explored with patch-clamp fluorometry[J]. Elife Sciences, 2020,9.
[3] Castle A L, Kuo C H, Ivy J L. Amylin influences insulin-stimulated glucose metabolism by two independent mechanisms[J]. The American journal of physiology, 1998,274(1 Pt 1): E6-12.
[4] Someya Y, Tamura Y, Suzuki R, et al. Characteristics of Glucose Metabolism in Underweight Japanese Women[J]. Journal of the Endocrine Society, 2018,2(3).
[5] Mishra P, Chan D C. Metabolic regulation of mitochondrial dynamics[J]. Journal of Cell Biology, 2016,212(4): 379-387.
[6] Warburg O. On the origin of cancer cells[J]. Science, 1956,123(3191): 309-14.
[7]
Jayavelu A K, Moloney J N, Böhmer F D, et al. NOX-driven ROS formation in cell transformation of FLT3-ITD-positive AML[J]. Experimental Hematology, 2016.
Copyright©博看网 www.bookan. All Rights Reserved.
世界最新医学信息文摘 2021年第21卷第23期
103
投稿邮箱:sjzxyx88@126
[8]
Quinlan C L, Treberg J R, Perevoshchikova I V, et al. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters[J]. Free Radical Biology & Medicine, 2012,53(9).
[9] Handy D E, Loscalzo J. Redox regulation of mitochondrial function[J]. Antioxidants & Redox Signaling, 2012,16(11): 1323.[10] Szatrowski T P, Nathan C F. Production of large amounts of hydrogen peroxide by human tumor cells[J]. Cancer Res, 1991,51(3): 794-8.
[11] Shadel G S, Horvath T L. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015,163(3): 560-9.
[12]
Rimessi A, Previati M, Nigro F, et al. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies[J]. International Journal of Biochemistry & Cell Biology, 2016: S1357272516301558.
[13] Finkel T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate[J]. Sci Signal, 2012,5(215): pe10.
[14] Ying L, Jiajia L, Qinlu L, et al. Research Progress on Signaling Pathway-Associated Oxidative Stress in Endothelial Cells[J]. Oxidative Medicine and Cellular Longevity,2017,(2017-4-19), 2017,2017: 1-8.[15] Brown K K, Toker A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer[J]. F1000prime Reports, 2015,7.
[16] Yousefi B, Samadi N, Ahmadi Y. Akt and p53R2,partners that dictate the progression and invasiveness of cancer[J]. DNA Repair (Amst), 2014,22: 24-9.
[17] Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer[J]. Front Oncol, 2018,8: 160.
[18] Kim D H, Suh J, Surh Y J, et al. Regulation of the tumor suppressor PTEN by natural anticancer compounds[J]. Ann N Y Acad, 2017,1401: 136-149.
[19] Leslie N R, Bennett D, Lindsay Y E, et al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN[J]. Embo j, 2003,22(20): 5501-10.
[20]
Wei-Ru, Huang, Hung-Chuan, et al. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53,p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways[J]. Plos One, 2015.
[21] Cunnick J M, Dorsey J F, Mei L, et al. Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation[J]. Biochemistry & Molecular Biology International, 2015,45(5): 887.
[22] Seifried, Annegrit, Bergeron, et al. Reversible oxidation controls the activity and oligomeric state of the mammalian phosphoglycolate phosphatase AUM[J]. Free Radical Biology & Medicine, 2016.
[23] Rao R K, Clayton L W. Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation[J]. Biochem Biophys Res Commun, 2002,293(1): 610-6.
[24] Dokainish H M, Gauld J W. Formation of a Stable Iminol Intermediate in the Redox Regulation Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B)[J]. Acs Catalysis, 2015,5(4): 2195-2202.
[25] Lou Y W, Chen Y Y, Hsu S F, et al. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells[J]. Febs j, 2008,275(1): 69-88.
[26] Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metabolism, 2013,17(1): 113-124.
[27]
Harada K, Ferdous T, Harada T, et al. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma[J]. International Journal of Oncology, 2016.
[28] A., Hemminki. The molecular basis and clinical aspects of Peutz-Jeghers syndrome[J]. Cellular&Molecular Life ences, 1999,55(5): 735-750.
[29] Hadad S M, Baker L, Quinlan P R, et al. Histological evaluation of AMPK signalling in primary breast cancer[J]. BMC Cancer, 2009,9: 307.[30] Cardaci S, Filomeni G, Ciriolo M. Redox implications of AMPK-mediated signal transduction beyond energetic clues[J]. Journal of cell science, 2012,125: 2115-25.
[31] Ling N X Y, Kaczmarek A, Hoque A, et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress[J]. Nature Metabolism, 2020,2(1): 41-49.
[32]
Alexander A, Cai S L, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS[J]. Proc Natl Acad Sci U S A, 2010,107(9): 4153-8.
[33] Lee J, Hong E M, Kim J H, et al. Metformin Induces Apoptosis
and Inhibits Proliferation through the AMP-Activated Protein Kinase and Insulin-like Growth Factor 1 Receptor Pathways in the Bile Duct Cancer Cells[J]. Journal of Cancer, 2019,10(7).
[34] Xie Z, Zhang J, Wu J, et al. Upregulation of mitochondrial
uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes[J]. Diabetes, 2008,57(12): 3222-30.
[35] Hu C, Zhang X, Wei W, et al. Matrine attenuates oxidative stress
and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway[J]. 药学学报:英文版, 2019,000(004): P.690-701.
[36] Sena L A, Chandel N S. Physiological roles of mitochondrial
reactive oxygen species[J]. Mol Cell, 2012,48(2): 158-67.
[37] Wang Y, Nartiss Y, Steipe B, et al. ROS-induced mitochondrial
depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy[J]. Autophagy, 2012,8(10): 1462-1476.[38] Liu T, Wu L, Wang D, et al. Role of reactive oxygen species-mediated MAPK and NF-B activation in polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells[J]. Journal of Biochemistry, 2016.
[39] Shuo, Wang, Pengyan, et al. Autophagy and cell reprogramming[J].
Cellular & Molecular Life Sciences, 2015.
reactive oxygen species (ros)[40] Jin S, White E. Role of Autophagy in Cancer: Management of
Metabolic Stress[J]. Autophagy, 2007,3(1): 28-31.
[41] Zhang, Wan, Liu, et al. The emerging role of oxidative stress in
regulating autophagy: applications of cancer therapy[J]. Cellular and molecular biology (Noisy-le-Grand, France), 2017.
[42] Pua H H, Guo J, Komatsu M, et al. Autophagy Is Essential for
Mitochondrial Clearance in Mature T Lymphocytes[J]. Journal of Immunology, 2009,182(7): 4046-4055.
[43] Cao Y, Wang J, Tian H, et al. Mitochondrial ROS accumulation
inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer[J]. Journal of Experimental & Clinical Cancer Research, 2020,39(1).[44] Tal M C, Sasai M, Lee H K, et al. Absence of autophagy results
in reactive oxygen species-dependent amplification of RLR signaling[J]. Autophagy, 2009,106(5): 2770-5.
[45] Scherz-Shouval R, Shvets E, Fass E, et al. Scherz-Shouval R, Shvets E,
Fass E, Shorer H, Gil L, Elazar ZReactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749-1760[J]. The EMBO Journal, 2007,26(7): 1749-1760.
[46] Pérez-Pérez M E, Lemaire S D, Crespo J L. Control of Autophagy
in Chlamydomonas Is Mediated through Redox-Dependent Inactivation of the ATG4 Protease[J]. 2016,172(4): 2219-2234.
[47] Yamada K, Yoshida K. Mechanical insights into the regulation
of programmed cell death by p53 via mitochondria[J]. Biochim Biophys Acta Mol Cell Res, 2019,1866(5): 839-848.
[48] Chen Y, Mcmillan-Ward E, Kong J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species[J]. J Cell Sci, 2007,120(Pt 23): 4155-66.
[49] Finkel T. Oxygen radicals and signaling[J]. Current Opinion in Cell
Biology, 1998,10(2): 248-253.
[50] Finkel, Toren, Holbrook, et al. Oxidants, oxidative stress and the
biology of ageing[J]. Nature, 2000.
[51] B V R A, A R R. A paradoxical role of reactive oxygen species in
cancer signaling pathway: Physiology and Pathology[J]. Process Biochemistry, 2020,100: 69-81.
[52] Neumann C A, Krause D S, Carman C V, et al. Essential role for
the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression[J]. Nature, 2003,424(6948): 561-5.
[53] Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in
Tumor Initiation and Progression[J]. Cold Spring Harb Perspect Med, 2016,6(3): a026104.
[54] Diebold L, Chandel N S. Mitochondrial ROS regulation of
proliferating cells[J]. Free Radic Biol Med, 2016,100: 86-93.
[55] Soon P J, Kumar S L, Li H, et al. A heteroplasmic, not
homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis[J]. Human Molecular Genetics, 2009,(9): 1578-89.[56] Min H Y, Jang H J, Park K H, et al. The natural compound
gracillin exerts potent antitumor activity by targeting mitochondrial complex II[J]. Cell Death Dis, 2019,10(11): 810.
Copyright©博看网 www.bookan. All Rights Reserved.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论