厌氧ABR与UASB
实践表明,一个成功的反应器必须是:①具备良好的截留污泥的性能,以保证拥有足够的生物量;②生物污泥能够与进水基质充分混合接触,以保证微生物能够充分利用其活性降解水中的基质。
同时,研究人员基于对各类化合物厌氧降解机理研究的进展,从厌氧底物降解途径和动力学两方面入手,分析提高和保持反应器内微生物活性的可能措施,并与反应器的设计相结合,全面提高反应器的性能。
厌氧过程实质是一系列复杂的生化反应,其中的底物、各类中间产物、最终产物以及各种的微生物之间相互作用,形成一个复杂的微生态系统,类似于宏观生态中的食物链关系,各类微生物间通过营养底物和代谢产物形成共生关系(symbiotic)或共营养关系(symtrophic)。因此,反应器作为提供微生物生长繁殖的微型生态系统,各类微生物的平稳生长、物质和能量流动的高效顺畅是保持该系统持续稳定的必要条件。如何培养和保持相关类微生物的平衡生长已经成为新型反应器的设计思路。
Lettinga教授在展望未来厌氧反应器发展动向时指出,现有的各类高效厌氧反应器中,上流式污泥床(USB)系统是最受欢迎的,也是最有发展前途的,上流式厌氧污泥床(UASB)系统在全球范围的风行可以作为例证。USB系统的一个优点是反应器内水流方向与产气上升方向相一致,一方面减少堵塞的机会,另一方面加强了对污泥床层的搅拌作用,有利于微生物与进水基质的充分接触,也有助于形成颗粒污泥。关于新型高效反应器,Lettinga在推荐膨胀颗粒污泥床反应器EGSB(Expanded Granular Sludge Bed)的同时,提出了另一个极有前途,同时也是极富挑战性的新工艺,即分阶段多相厌氧反应器技术SMPA(Staged Multi-Phase Anaerobic Reactor)。
折流式厌氧反应器(Anaerobic Baffled Reactor)是Bachman和McCarty等人于1982年前后提出的一种新型高效厌氧反应器。
ABR简介
厌氧折流板反应器(Anaerobic BaffLted Reactor简称ABR)工艺首先由美国stanford大学的McCarty等于1981年在总结了各种第二代厌氧反应器处理工艺特点性能的基础上开发和研制的一种高效新型的厌氧污水生物技术[10]。清华大学的黄永恒认真比较分析了SMPA工艺和A
厌氧折流板反应器(Anaerobic BaffLted Reactor简称ABR)工艺首先由美国stanford大学的McCarty等于1981年在总结了各种第二代厌氧反应器处理工艺特点性能的基础上开发和研制的一种高效新型的厌氧污水生物技术[10]。清华大学的黄永恒认真比较分析了SMPA工艺和A
BR反应器的性能特点,认为ABR反应器完美的实现了reactor 性能SMPA工艺的思想要点,是一种很有发展前途的高效厌氧反应器。
从图2-1可以看出,由于在反应器中使用一系列垂直安装的折流板,将反应器分隔成串联的几个反应室,每个反应室都可以看作一个相对独立的上流式污泥床系统(up-flow sLudge bed,简称USB)。被处理的废水在反应器内沿折流板作上下流动,依次通过每个反应室的污泥床,废水中的有机基质通过与微生物接触而得到去除。借助于处理过程中反应器内产生的气体使反应器内的微生物固体在折流板所形成的各个隔室内作上下膨胀和沉淀运动,而整个反应器内的水流则以较慢的速度作水平流动。水流绕折流板流动而使水流在反应器内的流经的总长度增加,再加之折流板的阻挡及污泥的沉降作用,生物固体被有效地截留在反应器内。因此ABR反应器的水力流态更接近推流式。其次由于折流板在反应器中形成各自独立的隔室,因此每个隔室可以根据进入底物的不同而培养出与之系统的处理效果和运行的稳定性相适应的微生物落,从而导致厌氧反应产酸相和产甲烷相沿程得到了分离,使ABR反应器在整体性能上相当于一个两相厌氧系统,实现了相的分离。最后,ABR反应器可以将每个隔室产生的沼气单独排放,从而避免了厌氧过程不同阶段产生的气体相互混合,尤其是酸化过程中产生的H2可先行排放,利于产甲烷阶段中丙酸、丁酸等中间代谢产物可以在较低的H2
从图2-1可以看出,由于在反应器中使用一系列垂直安装的折流板,将反应器分隔成串联的几个反应室,每个反应室都可以看作一个相对独立的上流式污泥床系统(up-flow sLudge bed,简称USB)。被处理的废水在反应器内沿折流板作上下流动,依次通过每个反应室的污泥床,废水中的有机基质通过与微生物接触而得到去除。借助于处理过程中反应器内产生的气体使反应器内的微生物固体在折流板所形成的各个隔室内作上下膨胀和沉淀运动,而整个反应器内的水流则以较慢的速度作水平流动。水流绕折流板流动而使水流在反应器内的流经的总长度增加,再加之折流板的阻挡及污泥的沉降作用,生物固体被有效地截留在反应器内。因此ABR反应器的水力流态更接近推流式。其次由于折流板在反应器中形成各自独立的隔室,因此每个隔室可以根据进入底物的不同而培养出与之系统的处理效果和运行的稳定性相适应的微生物落,从而导致厌氧反应产酸相和产甲烷相沿程得到了分离,使ABR反应器在整体性能上相当于一个两相厌氧系统,实现了相的分离。最后,ABR反应器可以将每个隔室产生的沼气单独排放,从而避免了厌氧过程不同阶段产生的气体相互混合,尤其是酸化过程中产生的H2可先行排放,利于产甲烷阶段中丙酸、丁酸等中间代谢产物可以在较低的H2
分压下能顺利的转化。
图2-1 ABR的构造
ABR反应器在整体性能上相当于一个两相厌氧处理系统。一般认为,两相厌氧工艺通过产酸相和产甲烷相的分离,两大类厌氧菌可以各自生长在最适宜的环境条件下,有利于充分发挥厌氧菌的活性,提高系统的处理效果和运行的稳定性。Lettinga教授在预测未来厌氧反应器的发展动向是提出了极具潜力和挑战性的新工艺思想,即分阶段多相厌氧工艺(Staged multi phase anaerobic reactor,简称SMPA)。
图2-1 ABR的构造
ABR反应器在整体性能上相当于一个两相厌氧处理系统。一般认为,两相厌氧工艺通过产酸相和产甲烷相的分离,两大类厌氧菌可以各自生长在最适宜的环境条件下,有利于充分发挥厌氧菌的活性,提高系统的处理效果和运行的稳定性。Lettinga教授在预测未来厌氧反应器的发展动向是提出了极具潜力和挑战性的新工艺思想,即分阶段多相厌氧工艺(Staged multi phase anaerobic reactor,简称SMPA)。
ABR反应器与单个UASB有显著不同。
1)UASB可近似看作是一种复杂混合型反应器,而ABR是一种复杂混合型水力流态。
2)UASB中酸化和产甲烷两类不同的微生物相交织在一起,各自不能很好的利用自身优势。ABR就不同了,它在各个反应室中的微生物相是逐级递变的,两大类厌氧菌可以各自生长在最适宜的环境条件下。且递变的规律和底物降解过程协调一致,从而确保相应的微生物相
拥有最佳的活性,提高系统的处理效果和运行的稳定性。
清华大学的黄永恒认真比较分析了SMPA工艺和ABR反应器的性能特点,认为ABR反应器完美的实现了SMPA工艺的思想要点,是一种很有发展前途的高效厌氧反应器。总的来说,ABR反应器具有构造简单、能耗低、抗冲击负荷能力强、处理效率高等一系列优点。当然,ABR反应器也有其不利的方面。首先,为了保证一定的水流和产气上升速度,ABR反应器不能太深。其次,进水如何均匀分布也是一个问题。再有,与单级UASB反应器相比,ABR反应器的第一格不得不承受远大于平均负荷的局部负荷,这可能会导致处理效率的下降。
折流式厌氧反应器(ABR)工艺是一种新型高效厌氧处理技术,其流态的特殊性决定了其工艺与一般厌氧反应器有较大的区别。本论文内容包括流态分析和工艺特性两大部分。流态试验用示踪响应法研究折流式厌氧反应器的流态特性,探讨流态数学模拟的可行方法,结合实际流态情况提出了多个适合于ABR的流态模型,并编制程序确定了流态模型参数。工艺特性试验以工业葡萄糖配制的人工废水为基质,较系统地研究了折流式厌氧反应器的工艺特性,内
容包括反应器的启动特性,不同负荷条件下的运行特性,反应器对碱度条件控制的试验,改进型——复合式ABR的工艺特性等。论文对颗粒污泥的结构和形成过程做了探讨。结合本次试验结果,论文还对Lettinga的分阶段多相厌氧工艺新思想进行了理论上的分析和实际操作可行性的评价。
论文的主要成果有:(1)ABR的流态可近似看成是多级串联CSTRs,局部流态为完全混合式,总体上则接近于推流式。流态特性决定了ABR的分阶段多相工艺特性。(2)流态特性与反应器的分格数和分格形式相关。导流板折角有利于改善反应器的流态。污泥床的存在与产气搅拌作用使得ABR的流态与清水条件下明显不同。Levenspiel死区计算方法对ABR不适用。(3)流态数学模拟应结合实际流态分析进行。对串联CSTRs、近似推流模型G和模型D以及Levenspiel模型的数学分析显示,模型G最适合于模拟实际运行时的ABR流态。(4)与UASB相比,ABR的启动历时较长。构造上分为5格的ABR工艺性能上优于分格数为3的ABR。(5)ABR在容积负荷低于10kgCOD/(m3.d)的中低负荷下运行稳定,出水COD的去除率优于相当条件下的UASB系统,出水COD常低于100mg/L。系统的总体性能相当于多级串联的UASBs系统,抗冲击负荷能力好。(6)碱度条件是通过pH值影响系统的运行。一般要求ABR沿程最低pH值不低于6.0,最好在6.5以上。(7)填料的加入有助于提高ABR的生物量,并由此
论文的主要成果有:(1)ABR的流态可近似看成是多级串联CSTRs,局部流态为完全混合式,总体上则接近于推流式。流态特性决定了ABR的分阶段多相工艺特性。(2)流态特性与反应器的分格数和分格形式相关。导流板折角有利于改善反应器的流态。污泥床的存在与产气搅拌作用使得ABR的流态与清水条件下明显不同。Levenspiel死区计算方法对ABR不适用。(3)流态数学模拟应结合实际流态分析进行。对串联CSTRs、近似推流模型G和模型D以及Levenspiel模型的数学分析显示,模型G最适合于模拟实际运行时的ABR流态。(4)与UASB相比,ABR的启动历时较长。构造上分为5格的ABR工艺性能上优于分格数为3的ABR。(5)ABR在容积负荷低于10kgCOD/(m3.d)的中低负荷下运行稳定,出水COD的去除率优于相当条件下的UASB系统,出水COD常低于100mg/L。系统的总体性能相当于多级串联的UASBs系统,抗冲击负荷能力好。(6)碱度条件是通过pH值影响系统的运行。一般要求ABR沿程最低pH值不低于6.0,最好在6.5以上。(7)填料的加入有助于提高ABR的生物量,并由此
提升反应器的性能。(8)ABR的启动驯化过程是微生物相发育演递成熟的过程,也是一个沿程微生物相自动分离的实现过程。颗粒污泥的发育成熟与丝状菌在颗粒表面生长繁殖所形成的网络骨架作用密切相关。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论