生物反应工程原理复习资料
生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。
生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。
酶和酶的反应特征
是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。
酶的来源:动物、植物和微生物
酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶
酶的性质1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常数。
          2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件  易变性和失活
          3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等
固定化酶的性质
固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。
与游离酶的区别:
游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用)
固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,再生活性 
固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH值和最适温度变化、动力学参数的变化 
单底物均相酶反应动力学
米氏方程
快速平衡法假设:1CS>>CE,中间复合物ES的形成不会降低CS2)不考虑 
这个可逆反应(3          为快速平衡,            为整个反应的限速阶段,因此ES分解成产物不足以破坏这个平衡
稳态法假设:1CS>>CE,中间复合物ES的形成不会降低CS2)不考虑    这个可逆反应(3)中间复合物ES一经分解,产生的游离酶立即与底物结合,使中间复合物ES浓度保持衡定,即
双倒数法(Linewear Burk):
对米氏方程两侧取倒数
                              作图
得一直线,直线斜率为    ,截距为   
根据直线斜率和截距可计算出Kmrmax
抑制剂对酶反应的影响:
失活作用(不可逆抑制)
抑制作用(可逆抑制 ):竞争抑制 、反竞争抑制 、非竞争抑制 混合型抑制
竞争抑制反应机理:
非竞争抑制反应机理:
可逆抑制各自的特点:P37
多底物均相酶反应动力学 (这里讨论:双底物双产物情况    )
    强制有序机制   
    顺序机制      西-钱氏机制
双底物双产物反应机制:    随即有序机制   
乒乓机制
注意
在工业级反应中, 反应速度一般是由改变所用酶浓度和(或)反应时间,而不是改变底物浓度来控制的,并且要测定的最重要参数是可测的转化率,而不是反应速度
酶失活的因素有哪些?
酶会由于种种因素发生失活。其中热失活最重要。酶的热失活随温度升高而失活程度加剧。
物理因素有:加热、冷却、机械力  化学因素有:酸、碱、盐、溶剂、表面活性剂、重金属、蛋白酶。
酶失活过程的动力学
未反应时的失活动力学
表征方法(数学模型):一级失活模型
: E--具有活性的酶
D--失活的酶
kd--衰变常数
模型中:
?
1时,底物对酶失活无影响
?0时,酶完全被底物所保护
0<?<1时,底物对酶有部分保护作用
?>1时,底物加速酶的失活
因此,称?为底物对酶稳定性影响系数 
影响固定化酶促反应的主要因素:
子构象的改变、位阻效应、微扰效应、分配效应  (可用Kp 定量描述)、扩散效应  (可定量描述)
评价酶反应器指标:转化率、产率、选择性、停留时间
均相酶反应器的分类:
              批式反应器(间歇反应器)
按操作方式   连续反应器
                半间歇反应器
批式反应器    将底物一次加入反应器内,在反应的过程中无底物和产物的输入和输出,底物和产物的浓度随反应时间变化
连续反应器    底物等连续输入反应器,产物连续从反应器输出,反应器的任何部位的各组分均不随反应时间变化(稳定态)
半连续反应器  在一次反应的过程中,底物分次补入
批式全混型反应器(间歇式搅拌罐反应器)(batch stirred-tank reactor BSTR
连续全混型反应器(连续式搅拌罐反应器)(continuous stirred-tank reactorCSTR
活塞流反应器(plug flow reactorPFR
全混流——流入的液体在装置内瞬间完全混合。也就是说,各组分的浓度及粒子的分散无论在什么地方都完全相同。
活塞流——反应器内反应液象活塞样的流动。通过装置的液体在垂直于从入口到出口的流向的方向上的速率完全相同,在流动方向上既没有混合也没有扩散。
非均相酶反应器
用于由固定化酶催化的非均相反应的反应器
非均相酶反应器的类型及结构设计要考虑:固定化酶更换操作难易 底物性质 反应体系粘度  PH值范围控制等因素
非均相酶反应器有:
搅拌罐反应器 
可以是:批式的BSTR(一般只适用于实验室研究,如用于工业生产,则每批反应结束都要进行固液分离)
连续式的CSTR(更适宜与工业生产,但应在出口处设置过滤器防止固定化酶颗粒的流失)
固定床反应器 是最广泛适用的固定化酶反应器。
缺点:对固定化酶颗粒的强度要求高;液相的连续流动致温度和PH控制难。
优点:连续操作、负载力大、效率高、生产能力大等
操作:液相的流速和Re数都采用较小值、延长停留时间将有利于达到一定的转化率
流化床反应器  流化流速范围窄,不易工业应用
缺点:流化态要求流体流速必须提高到一定程度致停留时间不足、转化率不能足够高(克服办法:部分反应液回补再循环)
优点:1液相和固相的微环境较易控制2传热、传质性能好3不会堵塞4 能处理微小粉末状底物
      5固定化酶颗粒可以做得足够小(  可以足够高)
细胞反应工程
细胞的基本特征
菌体成分80%左右的水分,以及蛋白质、糖、脂类、核酸、维生素和无机物等构成。
物理性质:
密度:单细胞微生物的密度会因培养条件而异;菌体絮凝物及菌丝团的湿密度近似于水(流化速率低);低浓度单细胞菌体悬浮液为牛顿流体;一般,含菌丝的培养液显示非牛顿流体特性;分泌了大量高分子化合物的菌体悬浮液为非牛顿流体(非牛顿流体的搅拌和通气效果很差)
微生物反应的特征:
特点:常温常压不爆炸、主要原料碳源价廉源广、反应过程受生物的自控 、产高分子和特异反应易进行、细胞本身也是产品、遗传改变可大幅度改良性能或获得新性能
但是    1底物相当多地用于繁殖;2副产物较多、反应条件影响产品品质;
3容易发生遗传变异,有利于维持性能稳定的固定化技术不成熟
细胞反应的计量
得率系数
细胞(菌体)得率:
  YX/S=生成菌体的干重 / 消耗底物的质量=微生物生长速率 / 底物消耗速率
产物得率:YP/S=代谢产物的生成量 / 底物消耗量
碳得率(碳转化率):
  YC=生成物含碳量/消耗的碳量=生成的菌体量×菌体含碳量/消耗的碳源量×碳源的含碳量
细胞反应的化学平衡通式
对忽略产物生成的细胞生长过程的计量关系可表示为
CmHnOl+aO2+bNH3            cC?H?O?N?+dCO2+eH2O
底物碳源      氮源                细胞
C元素:                                                        1
H元素:                                                        2
O元素:                                                        3
N元素:                                                        4
上述4个细胞反应的计量方程,不足以计算abcde5reactor的特点个未知量,因而再寻1个方程
如在好氧型培养时,可定义呼吸商(仪器测定)作为第5个方程;
                                                              5
或采用还原度平衡的方法(C=4H=1N=-3O=-2P=5S=6
联立15式,有
解得细胞反应方程的abcde5个系数
例:某以葡萄糖为底物的微生物细胞培养过程,2/3的碳转化为细胞。其细胞培养的反应方程为
C6H12O6+aNH3+bO2=cdH2O+eCO2
  葡萄糖                        微生物细胞
1)试确定计量系数abcde
2)试计算其细胞对底物的得率YX / S
3)试计算呼吸商RQ
解:(1)细胞反应的方程式系数的计算
  1mol葡萄糖所含有的C元素为72g,根据题意1mol葡萄糖转化为微生物细胞的C元素为:                                                g
则有:转化为CO2C元素为:                    g
则:                     
N元素平衡,有:
H元素平衡,有:                                         
O元素平衡,有:                                           
所以:
        a= 0.782b=1.473c=0.909d=3.855e=2   
即:
            C6H12O6+0.782NH3+1.473O2=0.909C
2)细胞对底物的得率YX / S的计算
3  呼吸商RQ的计算
呼吸商的计算 
比消耗速率
比生成速率
微生物反应动力学
模型的分类:
有,按是否对细胞的生长进行平衡生长化假设,分的类型:结构模型、非结构模型(非平衡生长时,采用结构模型)
有,按是否考虑细胞体中的个体的随机(即时)变化,分的类型:随机性模型、确定性模
型(当细胞浓度在104/ml以下时,需足够重视个体的影响,采用随机性模型如,灭菌动力学;发酵过程中,细胞浓度经常在107~1010/ml范围内,可忽略个体的影响,采用确定性模型)

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。