崩解时限延长的原因
崩解时限
崩解度不合格是影响片剂质量的主要因素之一。《中华人民共和国药典》根据片剂作用的部位与吸收度不同,除了对含片等不作崩解检查以外,对其他片剂崩解时限均有不同要求。崩解度不合格的主要原因是在制粒过程中黏合剂用量过大,致使颗粒过硬,片子崩解时间被延长。此外,润滑剂对片剂的崩解亦有显著的影响。润滑剂多为疏水性物质,可延长片剂的崩解时限,阻碍水分进入片剂内部,故用量越大、影响越大。
在生产中如遇到制成的颗粒压片后崩解时限不合格,其解决方法一是加入崩解作用较强的崩解剂(如羟甲基淀粉钠);二是在保证片剂质量的前提下,按一定比例与崩解良好的颗粒混和均匀再压片;三是先加入一定量的崩解剂,然后再与崩解良好的颗粒混合。
(一)片剂的崩解机制
片剂的崩解机制与所用崩解剂及所含药物的性质有关,主要有以下几点:
1.毛细管作用。片剂具有许多毛细管和孔隙,与水接触后水即从这些亲水性通道进入片剂内部,强烈的吸水性使片剂润湿而崩解。淀粉及其衍生物和纤维素类衍生物的崩解作用多与此相关。
2.膨胀作用。崩解剂吸水后充分膨胀,自身体积显著增大,使片剂的粘结力瓦解而崩散。羧甲基淀粉及其钠盐的崩解作用主要即在于其强大的膨胀作用。
3.产气作用。泡腾崩解剂遇水产生气体,借气体的膨胀而使片剂崩解。
其他机制尚有:可溶性原、辅料遇水溶解使片剂崩解或蚀解;表面活性剂因能改善颗粒的润湿性,而促进崩解;辅料中加用了相应的酶,因酶解作用而有利崩解等。
(二)片剂常用崩解剂
1.干燥淀粉。用前100℃干燥1h。本品对易溶物的片剂作用较差,适用于不溶性或微溶物的片剂。因淀粉的可压性较差,遇湿受热易糊化,故用量不宜过多,湿粒干燥温度亦不宜过高,否则将影响成品的硬度和崩解度。
2.羧甲基淀粉钠(CMS-Na)。具良好的流动性和可压性;遇水后,体积可膨胀200~300倍;亦可作为直接压片的干燥粘合剂和崩解剂。适用于可溶性和不溶物;用量为4%~8%,一般采用外加法。
3.低取代羟丙基纤维素(L-HPC)。膨胀度较淀粉大,崩解作用好。
4.泡腾崩解剂。
5.表面活性剂。
(三)片剂崩解剂的加入方法
tablet5
1.内加法
2.外加法
3.内外加法
4.特殊加入法
①泡腾崩解剂酸、碱组分一般应分别与处方药料或其他赋形剂制成干燥颗粒后,再行混合。压片颗粒或成品均应妥善贮藏、包装,避免与潮气接触。
②表面活性剂的加入,一般制成醇溶液喷在干颗粒上,或溶解于粘合剂内,或与崩解剂混合后加于干颗粒中。
片剂崩解时间超过药典规定的时限。崩解迟缓的原因及解决办法为:
1、崩解剂的品种及加入方法选择不当,用量不足,或干燥不够均影响片剂的崩解和溶出;应调整品种
或用量,并改进加入方法,如采用内外加结合法加入崩解剂,则利于崩解和溶出。
2、粘合剂粘性太强,或用量过多,或疏水性润滑剂用量太多等;应选用适宜的粘合剂或润滑剂,并调整其用量,或适当增加崩解剂用量。
3、颗粒粗硬或压力过大,致使片剂坚硬,崩解迟缓,溶出变慢;应将颗粒适当破碎或在硬度合格的前提下减少压力。
4、含胶、糖或浸膏的片子贮存温度较高或引湿后,崩解时间均会延长;应注意贮放条件。
崩解延缓
指片剂不能在规定时限内完成崩解影响药物的溶出、吸收和发挥药效。产生原因和解决方法如下:(1)片剂孔隙状态的影响水分的透入是片剂崩解的首要条件,而水分透入的快慢与片剂内部具有很多孔隙状态有关。尽管片剂的外观为一压实的片状物,但实际上它却是一个多孔体,在其内部具有很多孔隙并互相联接而构成一种毛细管的网络,它们曲折回转、互相交错,有封闭型的也有开放型的。水分正是通过这些孔隙而进入到片剂内部的,其规律可用下述的毛细管理论加以说明:
L2=Rγcosθ/2η•t
上式即为液体在毛细管中流动的规律,式中L为液体透入毛细管的距离,θ为液体与毛细管壁的接触角,R为毛细管的孔径,γ为液体的表面张力,η为液体的黏度,t为时间。由于一般的崩解介质为水或人工胃液,其黏度变化不大,所以影响崩解介质(水分)透入片剂的四个主要因素是毛细管数量(孔隙率)、毛细管孔径(孔隙径R)、液体的表面张力γ和接触角θ。影响这四个因素的情况有:
①原辅料的可压性。可压性强的原辅料被压缩时易发生塑性变形,片剂的孔隙率及孔隙径R皆较小,因而水分透入的数量和距离L都比较小,片剂的崩解较慢。实验证明,在某些片剂中加入淀粉,
往往可增大其孔隙率,使片剂的吸水性显著增强,有利于片剂的快速崩解。但不能由此推断出淀粉越多越好的结论,因为淀粉过多,则可压性差,片剂难以成型。
②颗粒的硬度。颗粒(或物料)的硬度较小时,易因受压而破碎,所以压成的片剂孔隙和孔隙径R皆较小,因而水分透入的数量和距离L也都比较小,片剂崩解亦慢;反之刚崩解较快。
③压片力。在一般情况下,压力愈大,片剂的孔隙率及孔隙径R愈小,透入水的数量和距离L
均较小,片剂崩解亦慢。因此,压片时的压力应适中,否则片剂过硬,难以崩解。但是,也有些片剂的崩解时间随压力的增大而缩短,例如,非那西丁片剂以淀粉为崩解剂,当压力较小时,片剂的孔隙率大,崩解剂吸水后有充分的膨胀余地,难以发挥出崩解的作用,而压力增大时,孔隙率较小,崩解剂吸水后有充分的膨胀余地,片剂胀裂崩解较快。
润滑剂与表面活性剂。当接触角θ大于90°时,cosθ为负值,水分不能透入到片剂的孔隙中,即片剂不能被水所湿润,所以难以崩解。这就要求药物及辅料具有较小的接触角θ,如果θ较大,例如疏水物阿司匹林接触角θ较大,则需加入适量的表面活性剂,改善其润湿性,降低接触角θ,使cos θ值增大,从而加快片剂的崩解。片剂中常用的疏水性润滑剂也可能严重地影响片剂的湿润性,使接触角θ增大、水分难以透入,造成崩解迟缓。例如,硬脂酸镁的接触角为121°,当它与颗粒混合时,将吸附于颗粒的表面,使片剂的疏水性显著增强,使水分不易透入,崩解变慢,尤其是硬脂酸镁的用量较大时,这种现象更为明显,如图4-14所示。同样,疏水性润滑剂与颗粒混合时间较长、混合强度较大时,颗粒表面被疏水性润滑剂覆盖得比较完全。因此片剂的孔隙壁具有较强的疏水性,使崩解时间明显延长。因此,在生产实践中,应对润滑剂的品种、用量、混合强度、混合时间加以严格的控制,以免造成大批量的浪费。
(2)其他辅料的影响
①黏合剂。黏合力越大,片剂崩解时间越长。一般而言,黏合剂的黏度强弱顺序为:动物胶(如明胶)>树胶(如阿拉伯胶)>糖浆>淀粉浆。在具体的生产实践中,必须把片剂的成型与片剂的崩解综合加以考虑,选用适当的黏合剂以及适当的用量。
②崩解剂。就目前国内现在的崩解剂品种而言,一般认为低取代羟丙基纤维素(L-HPC)和羧甲基淀粉钠CMS-Na)的崩解度能够符合药典要求的情况下,干淀粉作为崩解剂普遍应用的实际状况并不矛盾,
因为在崩解度能够符合药典要求的情况下,干淀粉因价廉、易得,仍不失为一种良好的崩解剂。另外,崩解剂的加入方法不同,也会产生不同的崩解效果。
(3)片剂贮存条件的影响片剂经过贮存后,崩解时间往往延长,这主要和环境的温度与湿度有关,亦即片剂缓缓地吸湿,使崩解剂无法发挥其崩解作用,片剂的崩解因此而变得比较迟缓。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。