Python求两个字符串最长公共⼦序列代码实例
⼀、问题描述
给定两个字符串,求解这两个字符串的最长公共⼦序列(Longest Common Sequence)。⽐如字符串1:BDCABA;字符串2:ABCBDAB。则这两个字符串的最长公共⼦序列长度为4,最长公共⼦序列是:BCBA
⼆、算法求解
这是⼀个动态规划的题⽬。对于可⽤动态规划求解的问题,⼀般有两个特征:①最优⼦结构;②重叠⼦问题
①最优⼦结构
设X=(x1,x2,...,xn)和Y=(y1,y2,...,ym)是两个序列,将X和Y的最长公共⼦序列记为LCS(X,Y)
出LCS(X,Y)就是⼀个最优化问题。因为,我们需要到X和Y中最长的那个公共⼦序列。⽽要X和Y的LCS,⾸先考虑X的最后⼀个元素和Y的最后⼀个元素。
⑴如果xn=ym,即X的最后⼀个元素与Y的最后⼀个元素相同,这说明该元素⼀定位于公共⼦序列中。因此,现在只需要:LCS(Xn-1,Ym-1)
LCS(Xn-1,Ym-1)就是原问题的⼀个⼦问题。为什么叫⼦问题?因为它的规模⽐原问题⼩。
为什么是最优的⼦问题?因为我们要的是Xn-1和Ym-1的最长公共⼦序列啊。最长的!换句话说就是最优的那个。
⑵如果xn!=ym,这下要⿇烦⼀点,因为它产⽣了两个⼦问题:LCS(Xn-1,Ym)和LCS(Xn,Ym-1)
因为序列X和序列Y的最后⼀个元素不相等,那说明最后⼀个元素不可能是最长公共⼦序列中的元素。
LCS(Xn-1,Ym)表⽰:最长公共序列可以在(x1,x2,...xn-1)和(y1,y2,...,ym)中。
LCS(Xn,Ym-1)表⽰:最长公共序列可以在(x1,x2,...xn)和(y1,y2,...,ym-1)中。
求解上⾯两个⼦问题,得到的公共⼦序列谁最长,那谁就是LCS(X,Y)。⽤数学表⽰就是:
LCS=max{LCS(Xn-1,Ym),LCS(Xn,Ym-1)}
由于条件⑴和⑵考虑到了所有可能的情况。因此,我们成功的把原问题转化成了三个规模更⼩的问题。
②重叠⼦问题
重叠⼦问题是什么?就是说原问题转化成⼦问题后,⼦问题中有相同的问题。子字符串是什么
原问题是:LCS(X,Y)。⼦问题有❶LCS(Xn-1,Ym-1)❷ LCS(Xn-1,Ym)❸ LCS(Xn,Ym-1)
乍⼀看,这三个问题是不重叠的。可本质上它们是重叠的,因为它们只重叠了⼀⼤部分。举例:
第⼆个⼦问题:LCS(Xn-1,Ym)就包含了问题❶LCS(Xn-1,Ym-1),为什么?
因为,当Xn-1和Ym的最后⼀个元素不相同时,我们⼜需要将LCS(Xn-1,Ym-1)进⾏分解:分解成:LCS(Xn-1,Ym-1)和
LCS(Xn-2,Ym)
也就是说:在⼦问题的继续分解中,有些问题是重叠的。
由于像LCS这样的问题,它具有重叠⼦问题的性质,因此:⽤递归来求解就太不划算了。国为采⽤递归,它重复地求解了⼦问题,⽽且需要注意的是,所有⼦问题加起来的个数是指数级的。
那么问题来了,如果⽤递归求解,有指数级个⼦问题,故时间复杂度是指数级的。这指数级个⼦问题,
难道⽤了动态规划,就变成多项式时间了??
关键是采⽤动态规划时,并不需要去⼀⼀计算那些重叠了的⼦问题。或者说:⽤了动态规划之后,有些⼦问题是通过“查表”直接得到的,⽽不是重新⼜计算⼀遍得到的。举个例⼦:⽐如求Fib数列。
求fib(5),分解成了两个⼦问题:fib(4)和fib(3),求解fib(4)和fib(3)时,⼜分解了⼀系列的⼩问题...
从图中可以看出:根的左右⼦树:fib(4)和fib(3)下,是有很多重叠的!⽐如,对于fib(2),它就⼀共出现了三次。如果⽤递归来求解,fib(2)就会被计算三次,⽽⽤DP(Dynamic Programming)动态规划,则fib(2)只会计算⼀次,其他两次则是通过“查表”直接求得。⽽且,更关键的是:查求得该问题的解之后,
就不需要再继续去分解该问题了。⽽对于递归,是不断地将问题解,直到分解为基准问题(fib(0)或者fib(1))
说了这么多,还是写下最长公共⼦序列的递归式才完整。
C[i,j]表⽰:(x1,x2,...,xi)和(y1,y2,...,yj)的最长公共⼦序列的长度。公式的具体解释可参考《算法导论》动态规划章节
三、LCS Python代码实现
#! /usr/bin/env python3
# -*- coding:utf-8 -*-
# Author : mayi
# Blog : wwwblogs/mayi0312/
# Date : 2019/5/16
# Name : test03
# Software : PyCharm
# Note : ⽤于实现求解两个字符串的最长公共⼦序列
def longestCommonSequence(str_one, str_two, case_sensitive=True):
"""
str_one 和 str_two 的最长公共⼦序列
:param str_one: 字符串1
:param str_two: 字符串2(正确结果)
:param case_sensitive: ⽐较时是否区分⼤⼩写,默认区分⼤⼩写
:
return: 最长公共⼦序列的长度
"""
len_str1 = len(str_one)
len_str2 = len(str_two)
# 定义⼀个列表来保存最长公共⼦序列的长度,并初始化
record = [[0 for i in range(len_str2 + 1)] for j in range(len_str1 + 1)]
for i in range(len_str1):
for j in range(len_str2):
if str_one[i] == str_two[j]:
record[i + 1][j + 1] = record[i][j] + 1
elif record[i + 1][j] > record[i][j + 1]:
record[i + 1][j + 1] = record[i + 1][j]
else:
record[i + 1][j + 1] = record[i][j + 1]
return record[-1][-1]
if __name__ == '__main__':
# 字符串1
s1 = "BDCABA"
# 字符串2
s2 = "ABCBDAB"
# 计算最长公共⼦序列的长度
res = longestCommonSequence(s1, s2)
# 打印结果
print(res) # 4
以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论