y
p
o
C
w
ehue trunc函数
i
v
e
R
y
p
o
C
w
e
i
v
e
R
y
p
o
C
w
e
i
v
e
R
y
p
o
C
w
e
i
v
e
R
R e
v i e w
C
o p y
()221
2()0S S S FS f S S FS
µ        =
>
(1)
R e
v i e w
C
o p y
()ds s c FS
FS
=
22221exp 21
µ
(2)
In (1)-(2),  2is the variance of the Gaussian pdf (before truncation) a nd µis its mean value. The probability of S not exceeding the transition level T k is
()()
Pr T k
k k F T S T = (3)
For simplicity in notation F will be used for the probability distribution function F Tk
throughout this paper, that is F (T k )=F Tk (T k ). The distribution function of T k is obtained
from (1)-(2) and is described by
+=      2
22121 µ µk k T erf c T F (4)
where erf (·) denotes the error function. One may note that when FS  grows (that is, FS
tends to infinity) the quantity c in (2) tends to unity and thus (1) and (4) correspond to the standard probability density and distribution for a Gaussian stochastic variable – quantities that in the sequel will be denoted  and  ,respectively.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。