python求导函数公式_python怎么实现函数求导
python实现函数求导的⽅法是:1、利⽤sympy库中的symbols⽅法传⼊x和y变量;2、利⽤sympy库中的diff函数传⼊需要求导的函数即可返回求导之后的结果。
python利⽤sympy库对某个函数求导,numpy库使⽤该求导结果计算的程序
在python数据处理过程中,我们经常会遇见这样⼀种情况。需要对⼀个函数表达式求偏导,并将具体数值代⼊导数式。
⽽python中通常可⽤于函数求导的函数是sympy库中的diff()函数。
但他通常所求得的导数只是⼀个符号表达式。不能直接带⼊数据使⽤。
如下例:import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
z = sp.sin(2*sp.pi*x 2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
print(zx)
print(zy)
其输出为:2*pi*cos(2*pi*x 2*y/5)
2*cos(2*pi*x 2*y/5)/5
那么该如何解决这个问题呢?
对x,y使⽤evalf()函数分别赋值后,⽤float进⾏类型转换后,才能利⽤numpy进⾏数值计算。
如下例:import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
linspace numpyz = sp.sin(2*sp.pi*x 2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
x1 = 10
y1 = 5
z_x1 = float(zx.evalf(subs={x:x1,y:y1}))
z_y1 = float(zy.evalf(subs={x:x1,y:y1}))
print(z_x1)
print(z_y1)
其输出结果:-2.61472768902227
-0.16645873461885696
那如果我的x或y不是单⼀的值呢?⽽是⼀个数组。
我们可以利⽤⼀个循环来完成。
如下例:import sympy as sp
import numpy as np
x,y = sp.symbols('x y')
z = sp.sin(2*sp.pi*x 2*y/5)
zx = sp.diff(z,x)
zy = sp.diff(z,y)
x_array = np.linspace(-5, 5, 10)
y_array = np.linspace(-5, 5, 10)
temp_x = []#先定义⼀个⽤于存储x偏导的空列表
temp_y = []#先定义⼀个⽤于存储y偏导的空列表
for i in range(10):
z_x = float(zx.evalf(subs={x:x_array[i],y:y_array[i]}))
temp_x.append(z_x)#将计算得到的偏导值⼀⼀添加到列表中
z_y = float(zy.evalf(subs={x:x_array[i],y:y_array[i]}))
temp_y.append(z_y)
zx_array = np.array(temp_x)#将列表转换为数组
zy_array = np.array(temp_y)
print(zx_array)
print(zy_array)
输出结果为:[-2.61472769 4.11163864 6.02946289 0.89585862 -5.2854481 -5.2854481 0.89585862 6.02946289 4.11163864 -2.61472769]
[-0.16645873 0.26175505 0.38384753 0.05703213 -0.33648208 -0.33648208
0.05703213 0.38384753 0.26175505 -0.16645873]
由此便实现了由sympy得到求导结果,到numpy库进⾏数值计算。
本⼈还是python初学者,有什么错误恳请各位⼤佬及时指正~
学习路上共同进步~
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论