《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)
GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)
GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)
GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)
GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)
GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)
GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)
GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)
GTM010《A Course in Simple-Homotopy Theory》M.M Cohen
GTM011《Functions of One Complex VariableⅠ》John B.Conway
GTM012《Advanced Mathematical Analysis》Richard Beals
GTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)
GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)
GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)
GTM017《Random Processes》Murray Rosenblatt
GTM018《Measure Theory》Paul R.Halmos(测度论)
GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)
GTM020《Fibre Bundles》Dale Husemoller(纤维丛)
GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数)
GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.Mack
GTM023《Linear Algebra》Werner H.Greub(线性代数)
GTM024《Geometric Functional Analysis and Its Applications》Paul R.Holmes
GTM025《Real and Abstract Analysis》Edwin Hewitt, Karl Stromberg
GTM026《Algebraic Theories》Ernest G.Manes
GTM027《General Topology》John L.Kelley(一般拓扑学)
GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)
GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)
GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)
GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)
GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)
GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)
GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)
GTM038《Several Complex Variables》H.Grauert, K.Fritzshe
GTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)
GTM040《Denumerable Markov Chains》John G.Kemeny, J.Laurie Snell, Anthony W.Knapp
GTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)
GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限的线性表示)
GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer Jerison
GTM044《Elementary Algebraic Geometry》Keith Kendig
GTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)
GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)
GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.Moise
GTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)
GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)
GTM050《Fermat's Last Theorem》Harold M.Edwards
GTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)
GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.Watkins
GTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl Pearcy
GTM056《Algebraic Topology:An Introduction》W.S.Massey
GTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.Fox
GTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)
GTM059《Cyclotomic Fields》Serge Lang
GTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)
GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)
GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla Bollobás
GTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)
GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)
GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射概型引论)
GTM067《Local Fields》Jean-Pierre Serre(局部域)
GTM069《Cyclotomic FieldsⅠandⅡ》Serge Lang
GTM070《Singular Homology Theory》William S.Massey
GTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)
GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合论)
GTM073《Algebra》Thomas W.Hungerford(代数)
GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.Hochschild
GTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru Iitaka
GTM077《Lectures on the Theory of Algebraic Numbers》Erich Hecke
GTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)
GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.Robinson
GTM081《Lectures on Riemann Surfaces》Otto Forster
GTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)
GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)
GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)
GTM087《Cohomology of Groups》Kenneth S.Brown(上同调)
GTM088《Associative Algebras》Richard S.Pierce
GTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)
GTM090《An Introduction to Convex Polytopes》Ame Brondsted
GTM091《The Geometry of Discrete Groups》Alan F.Beardon
GTM092《Sequences and Series in BanachSpaces》Joseph Diestel
GTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)
GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李基础)
GTM095《Probability》A.N.Shiryaev(2ed.)
GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)
springboot原理书籍GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)
GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom Dieck
GTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)
GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul Ressel
GTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)
GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李、李代数及其表示)
GTM103《Complex Analysis》Serge Lang
GTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)
GTM105《SL₂ (R)》Serge Lang(SL₂ (R))
GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李在微分方程中的应用)
GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael Range
GTM109《Univalent Functions and Teichmueller Spaces》Lehto Olli
GTM110《Algebraic Number Theory》Serge Lang(代数数论)
GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)
GTM112《Elliptic Functions》Serge Lang(椭圆函数)
GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)
GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)
GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.Srinivasan
GTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)
GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)
GTM121《Cyclotomic Fields》Serge Lang
GTM122《Theory of Complex Functions》Reinhold Remmert
GTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)
GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数)
GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey Rauch
GTM129《Representation Theory:A First Course》William Fulton, Joe Harris
GTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)
GTM131《A First Course in Noncommutative Rings》T.Y.Lam(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》Alan
F.Beardon(有理函数的迭代:复解析动力系统)
GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)
GTM134《Coding and Information Theory》Steven Roman
GTM135《Advanced Linear Algebra》Steven Roman
GTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.Weintraub
GTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)
GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)
GTM139《Topology and Geometry》Glen E.Bredon
GTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre Aubin
GTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz Kredel
GTM142《Real and Functional Analysis》Serge Lang(3ed.)
GTM143《Measure Theory》J.L.Doob
GTM144《Noncommutative Algebra》Benson Farb, R.Keith Dennis
GTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)
GTM146《Computability:A Mathematical Sketchbook》Douglas S.Bridges
GTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)
GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David Eisenbud
GTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)
GTM152《Lectures on Polytopes》Günter M.Ziegler
GTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)
GTM154《An introduction to Analysis》Arlen Brown, Carl Pearcy
GTM155《Quantum Groups》Christian Kassel(量子)
GTM156《Classical Descriptive Set Theory》Alexander S.Kechris
GTM157《Integration and Probability》Paul Malliavin
GTM158《Field theory》Steven Roman(2ed.)
GTM159《Functions of One Complex Variable VolⅡ》John B.Conway
GTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)
GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime r
GTM164《Additive Number Theory:The Classical Bases》Melvyn B.Nathanson
GTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》
Melvyn B.Nathanson
GTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.Sharpe
GTM167《Field and Galois Theory》Patrick Morandi
GTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)
GTM169《Matrix Analysis》Rajendra Bhatia
GTM170《Sheaf Theory》Glen E.Bredon(2ed.)
GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)
GTM172《Classical Topics in Complex Function Theory》Reinhold Remmert
GTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)
GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)
GTM175《An Introduction to Knot Theory》W.B.Raymond Lickorish
GTM176《Riemannian Manifolds:An Introduction to Curvature》John M.Lee
GTM177《Analytic Number Theory》Donald J.Newman(解析数论)
GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)
GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)
GTM181《Numerical Analysis》Rainer Kress
GTM182《Ordinary Differential Equations》Wolfgang Walter
GTM183《An introduction to Banach Spaces》Robert E.Megginson
GTM184《Modern Graph Theory》Béla Bollobás(现代图论)
GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)
GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)
GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert Goldblatt
GTM189《Lectures on Modules and Rings》T.Y.Lam(模和环讲义)
GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)
GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)
GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles Lacombe
GTM193《Advanced Topics in Computational Number Theory》Henri Cohen
GTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半)
GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)
GTM196《Basic Homological Algebra》M.Scott Osborne
GTM197《The Geometry of Schemes》David Eisenbud, Joe Harris
GTM198《A Course in p-adic Analysis》Alain M.Robert
GTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。