正则化解决过拟合方差引起的过拟合问题
过拟合是由于模型在训练数据上表现太好,以至于模型过于复杂,对训练数据进行了过度的拟合,导致模型在新的、未见过的数据上表现不佳。而方差用来衡量预测值与实际值之间的偏差,即模型的泛化能力。
当模型的方差过高时,即模型的预测值与实际值的偏差过大,可能会导致过拟合。这是因为模型在训练数据上的表现虽然很好,但在新的、未见过的数据上的表现却不佳,因为模型没有泛化到新数据的真实分布。
为了解决过拟合问题,可以通过降低模型的复杂度、增加数据量、使用正则化等方法来降低方差。此外,也可以采用集成学习等方法来提高模型的泛化能力。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。