可以克服GAN训练缺点的一些解决方案,有助于提高GAN性能
生成对抗网络GAN很强大,但也有很多造成正则化的缺点GAN难以使用的缺陷。本文介绍了可以克服GAN训练缺点的一些解决方案,有助于提高GAN性能。
生成对抗网络 (GAN) 是一类功能强大的神经网络,具有广泛的应用前景。GAN 本质上是由两个神经网络组成的系统——生成器 (Generator) 和鉴别器 (Discriminator)——二者相互竞争。
GAN 的原理示意图 
给定一组目标样本,生成器试图生成能够欺骗鉴别器的样本,使鉴别器认为这些样本是真实的。鉴别器试图从假的 (生成的) 样本中分辨出真实的 (目标) 样本。使用这种迭代训练方法,我们最终能得到一个非常擅长生成足以以假乱真的样本的生成器。
GAN 有很多应用,因为它们可以学习模仿几乎所有类型的数据分布。通常,GAN 用于移除图像伪影、超分辨率、姿势转换,以及任何类型的图像翻译,例如下面这些:
使用 GAN 进行图像翻译 (Source: phillipi.github.io/pix2pix/)
然而,由于其无常的稳定性,GAN 非常难以使用。不用说,许多研究人员已经提出了很好的解决方案来减轻 GAN 训练中涉及的一些问题。
然而,这一领域的研究进展如此之快,以至于很难跟踪所有有趣的想法。本文列出了一些常用的使 GAN 训练稳定的技术。
使用 GAN 的缺点
GAN 难以使用的原因有很多,这里列出一些主要的原因。
1、模式坍塌 (Mode collapse)
自然数据分布是高度复杂且多模态的。也就是说,数据分布有很多 “峰值”(peaks)  “模式”(modes)。每个 mode 表示相似数据样本的集中度,但与其他 mode 不同。
mode collapse 期间,生成器生成属于一组有限模式集的样本。当生成器认为它可以通过锁定单个模式来欺骗鉴别器时,就会发生这种情况。也就是说,生成器仅从这种模式来生成样本。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。