全连接层linear的用法
全连接层(linear layer)是神经网络中的一种常用层次结构,常用于将输入数据映射到输出空间,通过学习权重和偏置参数来建立输入和输出之间的线性关系。在本文中,我们将详细介绍全连接层的用法,并回答一些与其相关的问题。
一、全连接层的定义和功能
全连接层,也被称为线性层或者仿射层,在神经网络中起到了一个重要的作用。它的功能是将输入数据与权重矩阵相乘,然后加上偏置向量,最后通过激活函数输出。
具体来说,对于输入数据
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
堆叠自动编码器的优化技巧(六)
« 上一篇
guided backpropagation原理
下一篇 »
发表评论