1.课程设计的目的
(1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响
(2)使用Matlab软件进行图像的分割
(3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割性能
(4)能够掌握分割条件(阈值等)的选择
(5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合理的解释
2.课程设计的要求
(1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作
(2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)
(3)封闭轮廓边界
(4)区域分割算法:阈值分割,区域生长等
3.前言
3.1图像阈值分割技术基本原理
所谓图像分割是指根据灰度、彩、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准
在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰
度、颜、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。
若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。
在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的
设图像为f(x,y),其灰度集范围是[0,L],在0和L之间选择一个合适的灰度阈值T,则图像分割方法可由式(2.1)描述
                           
                     
     
(2.1)matlab直方图
这样得到的g(x,y)是一幅二值图像。
3.2图像阈值分割技术研究现状和实际应用
  阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。在工业生产中,机器视觉运用于产品质量检测等等。在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性将直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。
3.3图像阈值分割技术研究背景意义
阈值分割的优点是计算简单,运算效率较高,速度快。全局阈值对于灰度相差很大的不同目标和背景能进行有效的分割。当图像的灰度差异不明显或不同目标的灰度值范围有重叠时,应采用局部阈值或动态阈值分割法。另一方面,这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。在实际应用中,阈值法通常与其他方法结合使用法也叫变化阈值法,或自适应阈值法。这类算法的时间复杂性和空间复杂性比较大,但是抗噪能力强,对一些用全局阈值不易分割的图像有较好的效果。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。