外文文献:
Evolving Java Without Changing the Language In "The Feel of Java" James Gosling stated that: Java is a blue collar language. It's not PhD thesis material but a language for a job. Java feels very familiar to many different programmers because I had a very strong tendency to prefer things that had been used a lot over things that just sounded like a good idea.
The extraordinary success of Java offers weight to the notion that this was a sensible approach, and if it remains an important goal for Java today, then it makes sense that the language should continue to evolve relatively slowly. In addition to this, the fact that Java is a mature, widely used language causes its evolution to be fraught with difficulty. For one thing, each feature added to the language can change the way it feels in subtle and often unpredictable ways, risking alienating developers who have already adopted it as their language of choice. For another, a feature that makes perfect sense on its own may interact with other features of the language in awkward or unexpected ways. Worse, once a language feature has been added it is all but impossible to remove even if it turns out to be detrimental to the language as a whole. To justify adding a new feature, a language designer must be highly confident that it will be of long term benefit to the language rather than a short term or fashionable solution to a problem that rapidly becomes redundant. To mitigate the risk a language designer will typically experim
ent by creating a separate language or branch, such as the Pizza language used to experiment with Java's generics, prior to their implementation. The problem with this approach is that the audience for such experiments is both small and self-selecting; obviously they will all be interested in language features, and many may be academics or researchers. An idea which plays well to such an audience may still play badly when it is incorporated into
the main language and general programmers start to work with it.
To get a sense of this, consider the closures debate that became so heated for Java 7. Implementations for the main proposals (and some others) have been available for some time but no consensus has emerged. In consequence Sun decided that JDK 7 will not get full closures support. The core argument came down to whether Java had become as complex as it could afford to be when generics (and in particular the wildcard syntax) were added to Java 5; and whether the addition of full support for closures was justified when Java already has a more limited form through anonymous inner classes. Two important use cases for adding full closures support were to simplify working with the fork/join API that is being added to JDK 7 to improve multi-core programming, and to help with resource clean-up. Josh Bloch's ARM block proposal, which is now expected to be in JDK 7 via Project Coin, offers an alternative solution to the latter problem. Dr. Cliff Click's research o
n a scalable, non-blocking programming style for Java offers an alternative approach to fork/join that may be more appropriate as the number of processor cores increases. If this were to happen, then the uses for closures in Java may arguably be too limited to justify their inclusion.
It remains important though that a programming language continues to develop at some level. This article therefore examines three alternative techniques for adding new language features to Java that don't require changes to the language itself - using a custom Domain Specific Language, exploiting the Java 6 annotation processor to add optional language features via a library, and moving the syntactic sugar from the language to the IDE. Each offers the potential to allow a wide audience of mainstream developers to experiment with the new features over the medium term in a non-invasive manner, and the best ideas can then filter down for inclusion in the core language.
Custom DSLs
The most widely discussed of the three is the Domain-Specific Language or DSL. There is some disagreement on exactly what the term means, but for the purposes of this discussion we'll refer to it simply as a language that has been created with a narrow focus to solve a particular problem, rather than as a general purpose language designed to solve every computing problem. As such we would
expect a DSL to be non-Turing complete and for the most part this is the case. There are edge cases of course. Postscript, for example, is a Turing complete language but also qualifies as a DSL using our definition.
As the above example also illustrates, the idea of a DSL is not new. Other familiar DSLs include Regular Expressions, XSLT, Ant, and JSP, all of which require some sort of custom parser to process them. Martin Fowler also suggests that fluent interfaces/APIs can be considered a second type of DSL, which he refers to as an internal DSL. His definition is that an internal DSL is developed directly within the host language. This was a common practice amongst both Lisp and Smalltalk programmers, and more recently the Ruby community has been popularising the technique.
计算机专业javaWhilst many well-known DSLs are commercially developed and maintained, some enterprise development teams have used the technique to create a language that allows them to rapidly explore aspects of their problem domain. It isn't however as common as it might be, perhaps because DSLs have a fairly intimidating barrier to entry. The team has to design the language, build the parser and possibly other tools to support the programming team, and train each new developer that joins the team on how the DSL works. Here the emergence of tools to specifically support DSL development could significantly change the landscape. Intentional Software's Intentional Domain Wo
rkbench, which has been in development longer than Java has been around, is the first significant implementation
of such a tool. The project started life at Microsoft Research, and Dr. Charles Simonyi's 1995 paper "The Death of Computer Languages, the Birth of Intentional Programming" describes his vision. In 2002 Simonyi founded Intentional Software to continue working on his ideas and a hugely impressive video demo of the system is available. The product itself is at 1.0 status, but access is restricted to very limited partners.
Other software houses are also exploring the concepts, amongst them JetBrains, well respected for their IntelliJ IDEA Java IDE, who have recently released the 1.0 version of their Meta Programming System (MPS). MPS doesn't use a parser, instead working with the Abstract Syntax Tree (AST) directly. It provides a text-like projectional editor which allows the programmer to manipulate the AST, and is used to write languages and programs. For each node in the tree a textual projection is created - as the programmer works with the projection, the change is reflected in the node. This approach allows you to extend and embed languages in any combination (often referred to as language composing) promoting language re-use. JetBrains are using the product internally and have recently released YouTrack, a bug tracking product developed using the system.
The Java 6 Annotation Processor
Whilst DSLs are less common in more mainstream languages such as Java than they are in Ruby, Smalltalk and Lisp, recent developments in the Java language, in particular the annotation processor which was added in Java 6, offer new possibilities for developers looking to use them in Java. The JPA 2.0 criteria API that will ship as part of Java EE 6, itself a DSL, offers an example. Here the annotation processor builds up a metamodel type for each persistent class in the application. Whilst it would be perfectly possible for the developer to hand craft the metamodel in Java, it would be both tedious and error prone. The use of the annotation processor eliminates that pain and, since the annotation processor is built into Java 6, the approach requires no specific IDE support – an IDE delegates to the annotation processor triggered by the compiler, and the metadata model is generated on the fly.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论