688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

分类

【机器学习基础】常见损失函数总结

2024-10-02 14:51:29

【机器学习基础】常见损失函数总结在机器学习三步⾛中,其中最重要的就是第⼆步到⽤于衡量模型好坏的⽅法,也就是损失函数,通过求解最⼩化损失,从⽽求得模型的参数。前⾯分别对线性回归、LR以及实战部分的SVM、决策树以及集成学习算法进⾏了概述,其中都⽤到了不同的损失函数,今天在这⾥对机器学习中常见的损失函数进⾏⼀个总结。常见损失函数总结  上⾯说到,损失函数的选择对于模型训练起到了⾄关重要的作...

boosting算法

2024-10-02 13:12:07

boosting算法Boosting算法是一种集成学习方法,通过将若干个弱分类器(即分类准确率略高于随机猜测的分类器)进行适当的加权组合,形成一个强分类器,以提高整体分类性能。在机器学习领域,Boosting算法具有广泛的应用,尤其在解决分类问题上表现出。Boosting算法的核心思想是通过迭代的方式,不断调整数据的权重分布,使得前一个弱分类器分错的样本在后续模型中得到更多的关注,从而使得整体模...

支持向量机的参数调优技巧(Ⅰ)

2024-10-02 13:01:04

支持向量机(Support Vector Machine, SVM)是一种常用的监督学习算法,用于解决分类和回归问题。它在处理高维数据和非线性数据方面表现优异,并且在实际应用中被广泛使用。然而,支持向量机的性能很大程度上取决于参数的选择。本文将讨论支持向量机的参数调优技巧,以及如何通过调整参数来提高模型性能。1. 核函数的选择支持向量机通过核函数将输入空间映射到更高维的特征空间,从而使数据在该空间...

目标函数权重

2024-10-02 12:42:20

目标函数权重在机器学习中,目标函数是一个非常重要的概念。它是用来衡量模型预测结果与真实结果之间的差距的函数。在训练模型时,我们希望通过调整模型参数来最小化目标函数,从而使模型的预测结果更加准确。目标函数的权重是指在最小化目标函数时,不同部分的重要程度。在实际应用中,我们通常会将目标函数分成多个部分,每个部分对应模型预测结果与真实结果之间的不同差距。例如,在图像分类问题中,我们可以将目标函数分成分类...

python 逻辑回归 混淆矩阵

2024-10-02 10:04:58

python 逻辑回归 混淆矩阵(最新版)1.逻辑回归概述  2.混淆矩阵概念及作用  3.Python 中实现逻辑回归的方法  4.如何使用 Python 绘制混淆矩阵  5.总结正文一、逻辑回归概述  逻辑回归(Logistic Regression)是一种用于分类问题的线性模型,其输入值为实数,输出值为 0 或 1。逻辑回归通过计算输入特征与...

Python机器学习算法—逻辑回归(LogisticRegression)

2024-10-02 09:56:52

Python机器学习算法—逻辑回归(LogisticRegression)逻辑回归(Logistic Regression)就是这样的⼀个过程:⾯对⼀个回归或者分类问题,建⽴代价函数,然后通过优化⽅法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字⾥带“回归”,但是它实际上是⼀种分类⽅法,主要⽤于两分类问题(即输出只有两种,分别代表两个类别)。回归模型中...

python 逻辑斯蒂回归多分类

2024-10-02 09:56:03

一、概述正则化逻辑回归    逻辑斯蒂回归是一种常用的分类算法,用于将数据分为两个或多个类别。在二分类问题中,逻辑斯蒂回归可以用于对数据进行二分,然后根据概率来确定新样本属于哪一类。然而,在多分类问题中,逻辑斯蒂回归的应用相对复杂一些。本文将讨论Python中逻辑斯蒂回归的多分类问题。二、逻辑斯蒂回归的多分类问题    1. 二分类问题的逻辑斯蒂回归&nbs...

逻辑回归 混淆矩阵

2024-10-02 09:51:53

逻辑回归 混淆矩阵逻辑回归是一种二分类算法,可以将输入特征与输出概率之间的关系建模为一个逻辑函数。混淆矩阵(confusion matrix)是用于评估分类模型的性能的一种方法,它是一个表格,显示了模型对样本分类的准确性和错误性。混淆矩阵将测试样本划分为四个不同的类别:正则化逻辑回归- True Positive (TP): 正样本被正确地预测为正样本- True Negative (TN): 负...

基于模糊逻辑的降水粒子相态识别技术

2024-10-02 08:33:19

第 21 卷  第 12 期2023 年 12 月太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information TechnologyVol.21,No.12Dec.,2023基于模糊逻辑的降水粒子相态识别技术罗泽虎,王旭东*,高涌荇(南京航空航天大学 雷达成像与微波光子技术教育部重点实验室,江苏 南京 210016...

基于注意力机制的条状池化服装图像分类

2024-10-02 08:06:09

基于注意力机制的条状池化服装图像分类摘要:随着互联网技术的不断发展,电子商务已经成为了一个非常重要的商业领域,而自动化的商品分类是电子商务中的重要环节。传统的图像分类方法可能会出现一些问题,例如图像噪声、光照变化等,这些问题限制了它们的实际应用。为了解决这些问题,本文提出了一种基于注意力机制的条状池化服装图像分类模型,以提高商品分类的准确性。正则化是每一层都加还是只加一些层本论文的研究内容为基于注...

智能垃圾分类系统的研究设计

2024-10-02 03:52:32

智能垃圾分类系统的研究设计    【摘要】    本文针对智能垃圾分类系统展开研究设计。引言部分包括对背景介绍和研究意义的探讨。随后对智能垃圾分类系统的基本原理进行解析,探讨系统架构设计、垃圾分类算法设计、传感器技术应用以及模型训练和优化。在总结研究成果并展望未来发展方向。通过本文的详细研究,可以为智能垃圾分类系统的设计和实现提供有益参考,推动垃圾分类工作的...

大数据背景下基于PCA-DELM_的入侵检测研究

2024-10-02 03:51:31

第 22卷第 12期2023年 12月Vol.22 No.12Dec.2023软件导刊Software Guide大数据背景下基于PCA-DELM的入侵检测研究王振东,王思如,王俊岭,李大海(江西理工大学信息工程学院,江西赣州 341000)摘要:恶意攻击类型及形式不断变化,攻击量逐渐增加,传统神经网络模型架构在提高模型精度、减少模型计算量、提高推理速度等方面起着重要作用,然而,传统模型架构搜索时...

基于机器学习的网络数据包分类与过滤技术

2024-10-02 03:18:07

基于机器学习的网络数据包分类与过滤技术网络数据包分类与过滤技术是网络安全领域中非常重要的研究方向之一,其目的是对网络传输中的数据包进行精确分类和过滤,以保障网络的安全和性能。近年来,随着机器学习技术的发展和应用,基于机器学习的网络数据包分类与过滤技术逐渐受到研究者的关注。传统的网络数据包分类与过滤技术主要依靠规则引擎、深度包检测(DPI)等方法来实现,然而这些方法在处理大规模的网络数据包时效率较低...

用Python编写简单的垃圾邮件过滤器

2024-10-02 03:07:50

用Python编写简单的垃圾邮件过滤器垃圾邮件过滤器是一种用于识别和过滤掉垃圾邮件的应用程序。在这篇文章中,我们将使用Python编写一个简单的垃圾邮件过滤器。我们将介绍垃圾邮件过滤器的原理和一些常用的方法,然后使用Python实现一个简单的基于规则的过滤器。#垃圾邮件过滤器原理垃圾邮件过滤器的原理是通过分析邮件的内容和特征来判断是否是垃圾邮件。它通常使用一些机器学习和自然语言处理技术来训练模型,...

grdirectcontext resetcontext -回复

2024-10-02 02:12:39

grdirectcontext resetcontext -回复如何使用深度学习模型进行图像分类任务?深度学习在计算机视觉领域取得了显著的突破,尤其是在图像分类任务上。本文将详细介绍如何使用深度学习模型进行图像分类,并以具体的步骤回答这个问题。第一步:数据收集和预处理在进行图像分类任务之前,我们需要收集大量的训练数据。这些数据应覆盖我们感兴趣的不同类别,以便模型能够学习它们之间的差异和特征。收集到...

sklearn——逻辑回归、ROC曲线与KS曲线

2024-10-02 00:57:34

sklearn——逻辑回归、ROC曲线与KS曲线⼀、sklearn中逻辑回归的相关类  在sklearn的逻辑回归中,主要⽤LogisticRegression和LogisticRegressionCV两个类来构建模型,两者的区别仅在于交叉验证与正则化系数C,下⾯介绍两个类(重要参数带**加绿):  sklearn.linear_model.LogisticRegression...

图像识别中的特征选择方法综述

2024-10-02 00:02:20

图像识别早已成为当今信息技术领域的一个热门话题,而特征选择方法则是图像识别领域中的一项重要研究内容。特征选择作为数据预处理的关键环节,其目的是从原始特征中选取出最具代表性和有意义的一组特征,降低维度并提高分类或聚类算法的性能。本文将对图像识别中的特征选择方法进行综述,探讨其在实际应用中的优缺点以及未来的发展方向。一、特征选择方法的分类特征选择方法主要可以分为过滤法、包装法和嵌入法三类。其中,过滤法...

基于深度学习的食用菌分类研究

2024-10-01 23:02:26

文章编号:1673-887X(2023)09-0102-03基于深度学习的食用菌分类研究官飞,许韬(福建林业职业技术学院智能制造系,福建南平353000)摘要在介绍基于传统提取特征的食用菌分类方法基础上,通过利用卷积神经网络对食用菌进行深度分类的过程,阐述了基于深度学习的食用菌分类方法。试验数据证明深度学习方法在食用菌分类任务上取得了较高的准确率,明显优于传统的提取特征图像识别分类方法。关键词食用...

一种鲁棒性的少样本学习方法

2024-10-01 23:02:01

2021年2月第2期Vol. 42 No. 2 2021小型微型计算机系统Journal  of  Chinese  Computer  Systems—种鲁棒性的少样本学习方法代磊超,冯林,杨玉亭,尚兴林,苏 菌(四川师范大学计算机科学学院,成都610101)E-mail : fenglin@ sicnu. edu. cn摘要:少样本学习是目前机器学习研究...

基于深度学习的图像识别与分类算法优化

2024-10-01 22:55:57

基于深度学习的图像识别与分类算法优化第一章:引言深度学习是一种通过模拟人类神经网络的方式进行机器学习的方法。在过去的几年中,深度学习在图像识别和分类算法方面取得了巨大的成功。本文将重点介绍基于深度学习的图像识别与分类算法的优化工作。正则化项鲁棒性第二章:深度学习算法在图像识别与分类中的应用深度学习算法具有强大的图像识别与分类能力,可以在大规模数据集上进行训练,从而实现高性能的图像识别和分类任务。该...

sklearn 松弛变量 -回复

2024-10-01 22:03:44

sklearn 松弛变量 -回复什么是松弛变量?在机器学习领域,松弛变量(slack variables)被广泛应用于处理分类问题中的线性不可分数据。具体而言,松弛变量是一种引入到线性支持向量机(Support Vector Machine,简称SVM)模型中的变量,它允许在处理不可分数据时容许一定程度的错误分类。松弛变量的引入使得SVM模型更加灵活,能够处理具有一定噪声或重叠的数据。为什么需要松...

粗糙集理论与方法

2024-10-01 21:49:24

粗糙集理论与方法粗糙集理论与方法是一种用于处理不确定性和不完全信息的数学方法。该方法最早由波兰科学家Zdzislaw Pawlak于1982年提出,其基本思想是基于约简和分割的思想对样本空间进行建模和分析。正则化点变量以体积平均量来表示粗糙集理论主要包括以下几个关键概念和步骤:1. 近似集:粗糙集理论认为,一个对象可能属于多个不同的概念或类别,且我们不能确定其准确的分类。因此,利用近似集的概念,我...

支持向量机(SVM)的定义、分类及工作流程图详解

2024-10-01 21:46:49

支持向量机(SVM)的定义、分类及工作流程图详解关于SVM可以做线性分类、非线性分类、线性回归等,相比逻辑回归、线性回归、决策树等模型(非神经网络)功效最好传统线性分类:选出两堆数据的质心,并做中垂线(准确性低)——上图左SVM:拟合的不是一条线,而是两条平行线,且这两条平行线宽度尽量大,主要关注距离车道近的边缘数据点(支撑向量support vector),即large margin class...

分类变量知识点总结归纳

2024-10-01 21:39:29

分类变量知识点总结归纳分类变量又称为名义变量,是一种表示不同类别的变量。它表示的是属性或特征,而不是数量。分类变量可以用来分组或分类数据,并且通常用文字或符号来表示不同的类别。在统计学和数据分析中,分类变量是非常常见的一种数据类型,它的分析方法和应用范围也非常广泛。在实际应用中,对分类变量的认识和掌握,对于数据分析和决策制定都有重要意义。二、分类变量的特点分类变量具有一些独特的特点,需要我们了解和...

螺丝分类识别算法-概述说明以及解释

2024-10-01 19:07:19

螺丝分类识别算法-概述说明以及解释1.引言1.1 概述在本文中,我将介绍螺丝分类识别算法的概述。螺丝分类问题是指在一个混合螺丝的集合中,通过图像识别算法将不同类型的螺丝进行分类。在工业生产中,螺丝的分类是非常重要的,因为不同类型的螺丝在具体的使用环境中有着不同的功能和要求。然而,由于螺丝种类繁多、外形相似度高以及数量庞大等因素的影响,传统的人工分类方法已经无法满足生产效率和准确性的要求。为了解决这...

集成学习Boosting算法综述

2024-10-01 18:40:35

集成学习Boosting算法综述一、本文概述正则化改进算法本文旨在全面综述集成学习中的Boosting算法,探讨其发展历程、基本原理、主要特点以及在各个领域的应用现状。Boosting算法作为集成学习中的一类重要方法,通过迭代地调整训练数据的权重或分布,将多个弱学习器集合成一个强学习器,从而提高预测精度和泛化能力。本文将从Boosting算法的基本概念出发,详细介绍其发展历程中的代表性算法,如Ad...

基于随机森林的改进算法

2024-10-01 18:12:38

基于随机森林的改进算法正则化改进算法作为一种强大的机器学习算法,随机森林经常被用于解决众多的分类和回归问题。它是由多个决策树组成的集成学习模型,这些决策树在彼此之间独立地进行学习,再通过投票方式进行整合,从而产生更加准确和稳定的预测结果。然而,在实际应用中,随即森林面临着一些问题和挑战,尤其是对于数据集不平衡和噪声数据的情况,其效果可能会受到严重的影响。为了克服这些问题,有许多针对随机森林的改进算...

高维数据分析与统计学研究

2024-10-01 16:54:32

高维数据分析与统计学研究随着科技的不断发展,越来越多的领域开始涉足大规模数据的分析与研究。人们的生活中数据无处不在,从社交媒体的用户行为数据,到医学研究中的基因组数据,再到金融领域的交易数据,这些数据都呈现出高维特征。高维数据的分析已经成为了统计学中的一个重要研究方向。在传统的统计学中,数据通常是低维度的,也就是说,只包含几个变量。而高维数据则意味着数据包含了大量的变量。由于高维度的数据维度很高,...

STATA软件操作(四)分类与等级资料的统计分析

2024-10-01 16:51:58

STATA软件操作(四)分类与等级资料的统计分析STATA软件操作(四)分类与等级资料的统计分析在统计学中,数据可分为分类数据和等级数据。分类数据是指事物被划分为不同的类别或类型,每个类别之间没有顺序或大小的关系。而等级数据则是指事物按照某种特定的顺序或大小排列。STATA是一款功能强大的统计分析软件,它提供了丰富的工具和函数,可以进行分类数据和等级数据的统计分析。本文将介绍如何使用STATA软件...

深度学习方法在松山湖地区地物分类中的应用

2024-10-01 16:43:52

DOI:10.16660/jki.1674-098X.2008-5640-6334深度学习方法在松山湖地区地物分类中的应用①贺丹*  张静(东莞理工学院城市学院计算机与信息学院  广东东莞  523000)摘  要:高分一号(GF-1)遥感影像具有分辨率高、光谱信息丰富、纹理清晰等特征,利用GF-1影像研究地物识别具有重要的现实意义。本文以东莞市松山湖...

最新文章