模型
logisticregression 三分类
逻辑回归的三分类问题正则化回归算法在机器学习中,三分类问题是一个常见的问题类型,其中目标变量有三个可能的类别。逻辑回归是一种广泛用于此类问题的算法。在三分类逻辑回归中,我们使用逻辑函数将线性回归的输出转换为概率,以便为每个类别分配一个概率值。1.工作原理逻辑回归基于一个前提,即数据中的因变量(也称为响应变量)是二元的或可转换为二元的。在三分类问题中,我们需要稍作调整。首先,我们需要使用一对多(On...
逻辑回归算法介绍
逻辑回归算法介绍随着机器学习的发展,逻辑回归算法成为了人们研究的热点之一。逻辑回归是一种分类算法,经常被用于预测二元分类问题。它是基于统计的概率模型,并且具有良好的可解释性和实现简单等优点。在本文当中,我们将对逻辑回归算法的原理、应用以及常见的问题进行详细介绍。一、逻辑回归算法的原理逻辑回归的核心思想在于通过建立一个映射函数,将输入的特征向量映射成为一个对数几率函数,然后再将对数几率函数传递到“s...
lm贝叶斯正则化算法
lm贝叶斯正则化算法一、引言贝叶斯正则化算法是一种经典的机器学习算法,它可以用于解决许多实际问题。在这篇文章中,我们将介绍LM贝叶斯正则化算法的基本原理、应用场景、优缺点以及实现方法。二、LM贝叶斯正则化算法的基本原理1. LM贝叶斯正则化算法概述LM贝叶斯正则化算法是一种用于线性回归问题的正则化方法,它通过引入先验分布来约束模型参数,从而提高模型的泛化能力。与传统的L1和L2正则化方法不同,LM...
利用机器学习算法进行交通流量预测
利用机器学习算法进行交通流量预测交通流量作为城市交通管理和规划的重要指标之一,对于保障交通系统的高效运行和优化交通资源配置具有重要意义。而利用机器学习算法进行交通流量预测,可以为交通部门提供准确的流量数据,有助于制定合理的交通政策和优化交通规划。交通流量预测是指通过对历史交通流量数据的分析和建模,预测未来一段时间内道路上的车辆流量情况。利用机器学习算法进行交通流量预测的方法已经被广泛研究和应用,下...
逻辑回归的技巧
逻辑回归的技巧正则化回归算法以下是一些逻辑回归的技巧:1. 特征工程:逻辑回归对输入特征的质量非常敏感。因此,在建模之前,需要对特征进行一些预处理,包括缺失值处理、特征转换、特征选择等。这有助于提高模型的性能。2. 正则化:逻辑回归容易受到过拟合的问题,因此使用正则化技术(如L1正则化或L2正则化)可以有效地控制模型的复杂度,防止过拟合。3. 多项式特征:通过引入多项式特征,可以捕捉数据中的非线性...
sklearn的逻辑回归算法
sklearn的逻辑回归算法逻辑回归(Logistic Regression)是一种广义线性模型(Generalized Linear Model),经常用于二分类问题的建模和预测,也可以扩展到多分类问题。逻辑回归的原理是基于逻辑函数(logistic function)或称为sigmoid函数,将线性回归模型的输出转换为概率值。逻辑函数的公式为:g(z)=1/(1+e^(-z))其中,z是线性函...
基于GADF与卷积神经网络的滚动轴承故障诊断研究
第38卷第5期2021年5月机㊀㊀电㊀㊀工㊀㊀程JournalofMechanical&ElectricalEngineeringVol.38No.5May2021收稿日期:2020-09-09基金项目:辽宁省自然科学基金资助项目(2019BS186)作者简介:刘红军(1971-)ꎬ男ꎬ辽宁沈阳人ꎬ副教授ꎬ硕士生导师ꎬ主要从事数字化制造技术方面的研究ꎮE ̄mail:133****8635@163....
基于深度学习的大规模客流预测算法研究
基于深度学习的大规模客流预测算法研究随着城市快速发展和人口增加,公共交通成为最为常用的交通方式之一。然而,随着客流量持续攀升,如何有效地进行大规模客流预测成为了城市交通发展的关键问题之一。基于深度学习的大规模客流预测算法研究成为了人们关注的热点。一、深度学习在客流预测中的应用深度学习是一种机器学习的方法,其通过对特征的分层提取和抽象,能够获得更为复杂的模式和关系。因此,深度学习在客流预测中的应用成...
基于改进CNN的光热电场太阳直接法向辐射预测研究
可再宝能源Renewable Energy Resources第39卷第2期2021年2月Vol.39 No.2Feb. 2021基于改进CNN 的光热电场太阳直接法向辐射预测研究杨德州1,李锦键2,吕金历1,杨维满2,王兴贵2(1.国网甘肃省电力公司经济技术研究院,甘肃兰州730000; 2.兰州理工大学电气工程与信息工程学院,甘肃兰州730050)摘要:为了在实际运行中...
MATLAB分类与预测算法函数
MATLAB分类与预测算法函数1、glmfit() 功能:构建⼀个⼴义线性回归模型。 使⽤格式:b=glmfit(X,y,distr),根据属性数据X以及每个记录对应的类别数据y构建⼀个线性回归模型,distr可取值为:binomial、gamma、inverse gaussian、normal(默认值)和poisson,分别代表不同类型的回归模型。2、patternnet...
人工智能机器学习技术练习(习题卷11)
人工智能机器学习技术练习(习题卷11)说明:答案和解析在试卷最后第1部分:单项选择题,共155题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]分箱用于处理()A)连续型数据B)离散型数据C)连续型和离散型数据即可2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签3.[单选题]关于回归问题,说法正确的是()A)可以不需要lab...
基于BERT模型的中文短文本分类算法
第47卷第1期Vol.47No.1计算机工程Computer Engineering2021年1月January 2021基于BERT 模型的中文短文本分类算法段丹丹1,唐加山1,温勇1,袁克海1,2(1.南京邮电大学理学院,南京210023;2.圣母大学心理学系,美国南本德46556)摘要:针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer...
CNN算法在语音识别中的实现及优化
CNN算法在语音识别中的实现及优化随着时代的发展和科技的不断进步,计算机技术也在迅猛地发展,人工智能正逐渐成为了一个热门的话题。在人工智能领域中,语音识别技术是一个重要的方向。而在语音识别中,CNN算法的应用越来越受到人们的重视。本文将会对CNN算法在语音识别中的实现及优化进行探讨。一、CNN算法概述CNN算法也叫卷积神经网络,是深度学习中的一种神经网络模型,具有强大的特征抽取和自适应学习能力。C...
《2024年具有L_q-正则项的稀疏线性判别分析及主成分分析》范文_百度文 ...
《具有L_q-正则项的稀疏线性判别分析及主成分分析》篇一具有L_q-正则项的稀疏线性判别分析与主成分分析一、引言在数据分析和机器学习中,线性判别分析(LDA)和主成分分析(PCA)是两种重要的无监督学习方法。这两种方法在许多领域如图像处理、生物信息学和自然语言处理中都有广泛的应用。然而,传统的LDA和PCA方法在处理高维数据时可能会遇到一些问题,如过拟合和计算复杂性。为了解决这些问题,我们引入了具...
基于正则化算法的高维数据分类技术研究
基于正则化算法的高维数据分类技术研究第一章 绪论近年来,随着互联网技术和数据采集技术的快速发展,各种类型的数据呈爆炸式增长。高维数据分类技术已经成为数据挖掘和机器学习领域中最重要的问题之一。高维数据在分类任务中的困难与众不同之处在于,高维数据呈现稀疏和过拟合的问题。解决高维数据分类难题的一种有效方法是采用正则化算法。本文将对基于正则化算法的高维数据分类技术进行详尽探讨。第二章 高维数据分类算法2....
卷积神经网络中的权重正则化技术
卷积神经网络中的权重正则化技术卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域应用广泛的深度学习模型。它通过模拟人类视觉系统的工作原理,能够自动学习和识别图像中的特征。在实际应用中,CNN的性能往往受到过拟合(overfitting)的影响,而权重正则化技术可以有效地缓解这个问题。过拟合是指模型在训练集上表现良好,但在测试集或新数据上表现较差的...
前馈神经网络中的正则化技巧(Ⅰ)
神经网络是一种人工智能算法,它可以模拟人类大脑的神经元网络,实现对复杂任务的学习和推理。前馈神经网络(Feedforward Neural Network)是其中最常见和最基础的一种类型。在神经网络的训练过程中,为了避免过拟合和提高模型的泛化能力,正则化技巧被广泛应用。本文将探讨在前馈神经网络中常用的正则化技巧。1. L2正则化L2正则化是最常见的正则化技巧之一。它通过在损失函数中加入权重的L2范...
如何调整神经网络的正则化参数
如何调整神经网络的正则化参数神经网络是一种强大的机器学习模型,它可以通过学习大量的数据来进行预测和分类任务。然而,当神经网络的模型过于复杂时,容易出现过拟合的问题,即在训练集上表现良好,但在测试集上表现较差。为了解决这个问题,我们可以使用正则化技术来限制神经网络的复杂度,从而提高其泛化能力。正则化是一种通过在损失函数中引入额外的约束来限制模型复杂度的方法。在神经网络中,最常用的正则化技术是L1和L...
基于正则化模型的K—SVD算法及其应用
基于正则化模型的K—SVD算法及其应用作者:刘坚桥 唐加山来源:《软件导刊》2018年第08期 摘要:提出一种基于正则化方法的K均值奇异值分解(K-SVD)算法。新算法在更新字典阶段,建立一种正则化模型,针对经典K-SVD算法中每次原子更新,引入正则项参与字典更新过程,将每次更新原子所产生的误差限制在设定范围内完成原子更新。在K-SVD算法正则...
基于VMD
现代电子技术Modern Electronics Technique2022年9月1日第45卷第17期Sep.2022Vol.45No.170引言系统放电的经济稳定性随着电力市场的发展而越发被重视。负荷预测可以为电力部门提前做好调度规划,提高系统的安全可靠性、保证系统的经济效益。其中,短期负荷预测是结合负荷及外在影响因素的往期数据对未来一天内或者数日内的负荷进行预测,精准的短期负荷预测对保证电力系...
基于SMPL灢X模型的人体姿态与形状重构算法
第39卷 第6期 陕西科技大学学报 V o l.39N o.6 2021年12月 J o u r n a l o f S h a a n x iU n i v e...
增强神经网络辨识模型泛化能力的研究
第22卷第1期海军航空工程学院学报Vol.22No.12007年1月JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE Jan.2007收稿日期:2006-08-23作者简介:曲东才(1964-),男,副教授,博士.增强神经网络辨识模型泛化能力的研究曲东才(海军航空工程学院控制工程系,山东烟台,264001)摘要:神经网络(Art ifi cia...
稀疏检索和 rerank 模型
稀疏检索和 rerank 模型是信息检索领域中常用的两种模型,它们能够有效地提高搜索引擎的检索效率和准确性。本文将对稀疏检索和 rerank 模型进行详细的介绍和分析,以帮助读者更好地理解和应用这两种模型。一、稀疏检索模型1.1 稀疏检索模型的概念稀疏检索模型是一种通过计算查询与文档之间的相似度来进行信息检索的模型。它通常使用向量空间模型或者词袋模型来表示文档和查询,然后通过计算它们之间的相似度来...
一般参数正则化的权重
一般参数正则化的权重正则化是一种常用的技术,用于在机器学习模型中控制模型的复杂度,并避免过拟合。在正则化中,我们通过增加一个正则化项来惩罚过大的参数值,从而降低模型的复杂度。在正则化中,常见的参数正则化方法有L1正则化和L2正则化。L1正则化(也称为Lasso正则化)通过在损失函数中增加参数绝对值的和来惩罚过大的参数值。当正则化权重较大时,L1正则化可以促使一些参数变为零,从而实现特征选择和模型稀...
llm模型理解表格-概述说明以及解释
正则化可以产生稀疏权值llm模型理解表格-概述说明以及解释1.引言概述部分的内容应该对LLM(Label-Linking Model)模型进行简要介绍,概括其基本概念和特点。以下是一个概述部分的参考内容:1.1 概述LLM模型是一种用于处理表格数据的机器学习模型。表格是一种结构化的数据形式,由行和列组成,用于存储和展示数据。然而,表格数据的复杂性常常导致难于分析和理解。LLM模型的出现旨在解决这一...
矩阵范数及其求导
矩阵范数及其求导在机器学习的特征选择中,利⽤选择矩阵的范数对选择矩阵进⾏约束,即是正则化技术,是⼀种稀疏学习。矩阵的L0,L1范数为了度量稀疏矩阵的稀疏性,则定义矩阵的⼀种范数,为:∥W∥1=∑i,j|W i,j|。即为矩阵所有元素的绝对值之和,能够描述接矩阵的稀疏性,但是在优化时,难度较⼤,是将情况向矩阵中元素尽可能是0的⽅向优化。1)L0范数是指向量中⾮0的元素的个数。如果我们⽤L0范数来规则...
低秩范数稀疏等概念
矩阵的秩就是一幅图片矩阵A中,可以用rank(A)个线性无关的特征通过线性组合,基本地还原图片信息。秩越低表示数据冗余性越大,因为用很少几个基就可以表达所有数据了。相反,秩越大表示数据冗余性越小。稀疏表示(Sparse Representations)1.什么是稀疏表示:用较少的基本信号的线性组合来表达大部分或者全部的原始信号。其中,这些基本信号被称作原子,是从过完备字典中选出来的;而过完备字典则...
基于深度学习的图像识别算法实现
基于深度学习的图像识别算法实现一、引言随着计算机技术的发展,深度学习作为一种新的人工智能技术已经逐渐走入人们的视野,被广泛应用于图像识别、语音识别、自然语言处理等领域。其中,基于深度学习的图像识别算法是目前最为热门的研究方向之一。本文将介绍基于深度学习的图像识别算法的实现方法以及其应用价值。二、图像识别算法的概述图像识别算法旨在通过对图像的分析和处理,自动识别图像中的目标物体或场景。传统的图像识别...
如何处理机器学习中的稀疏数据问题
如何处理机器学习中的稀疏数据问题稀疏数据在机器学习中是一种常见而又具有挑战性的问题。稀疏数据指的是数据集中包含大量的零值或缺失值。处理稀疏数据问题需要采取一些特定的方法和技术,以便能够更准确地建立模型并进行预测。在机器学习中,稀疏数据可能会导致一些问题。首先,稀疏数据会占用大量的存储空间,特别是在处理大规模数据集时。其次,稀疏数据会导致模型训练的困难,因为模型需要处理大量的零值或缺失值。最后,稀疏...
robertalarge的参数量_理论说明
robertalarge的参数量 理论说明1. 引言1.1 概述在自然语言处理 (Natural Language Processing, NLP) 领域,深度学习模型已经在诸如情感分析、文本生成和机器翻译等任务中表现出了卓越的性能。其中,许多最先进的模型都采用了大量参数来提高模型的复杂性和表示能力。然而,这些大型模型通常需要庞大的计算资源和存储空间,限制了它们在资源受限环境下的应用。正则化可以产...