688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

模型

符号回归算法

2024-09-30 00:48:24

符号回归(symbolic regression)是一种搜索算法,其目标是到最适合给定数据的数学公式或模型。不像线性回归等传统的回归方法泛指使用预先制定的数学形式,符号回归允许模型形状以数据驱动的方式来确定。符号回归的一种常见方法是遗传编程,这是一种启发式搜索方法,模拟了自然的进化。遗传编程在搜索过程中使用了类似于遗传算法的操作,例如交叉(crossover)和突变(mutation)。这些操作...

对比逻辑回归与 XGBoost 模型在信用风险应用中的优缺点

2024-09-30 00:48:13

201PRACTICE区域治理作者简介:范丽媛,生于1991年,中国人民大学统计学院在职人员高级课程研修班学员。对比逻辑回归与 XGBoost 模型在信用风险应用中的优缺点中国人民大学统计学院;北银消费金融有限公司  范丽媛摘要:随着时代的发展,科技越来越发达,科技逐渐走进我们的生活并改变我们的生活,数据科技逐渐取代了部分人工经验。风控主要是指对风险的预估和把控,本文中的风控主要指在金融...

使用AI技术进行数据分析与预测的步骤与注意事项

2024-09-30 00:47:27

使用AI技术进行数据分析与预测的步骤与注意事项AI技术在数据分析和预测中的应用越来越广泛。通过AI技术,我们可以更准确地分析和预测数据,为决策提供有力的支持。然而,要使用AI技术进行数据分析和预测,需要一定的步骤和注意事项。首先,进行数据收集和清洗是数据分析和预测的第一步。在这个阶段,我们需要收集与我们研究对象相关的数据,并进行清洗,去除噪声和异常值。数据的质量对于后续的分析和预测结果至关重要,因...

基于机器学习算法的CO2腐蚀速率预测

2024-09-30 00:47:14

2023年3月第38卷第2期西安石油大学学报(自然科学版)JournalofXi’anShiyouUniversity(NaturalScienceEdition)Mar.2023Vol.38No.2收稿日期:2021 05 04基金项目:国家重大科技专项项目资助(2017ZX05009-003)第一作者:彭龙(1996 ),男,博士研究生,研究方向:海上采油工程、智能油气田等。E mail:18...

ai 算法工程师手册

2024-09-30 00:46:48

AI 算法工程师手册一、数学基础1. 线性代数:理解向量、矩阵和线性变换的概念,熟悉矩阵的运算和逆矩阵的使用。2. 概率论与数理统计:掌握概率分布、条件概率、独立性和贝叶斯定理等概念,了解常用的统计方法如回归分析和分类。3. 微积分:理解函数、导数和微积分的基本概念,掌握梯度下降等优化方法。4. 离散数学:理解图论、树、图卷积神经网络的概念和算法,熟悉树的遍历和图的连通性。二、统计学习1. 监督学...

logistic regression逻辑回归算法 -回复

2024-09-30 00:43:19

logistic regression逻辑回归算法 -回复[logistic regression逻辑回归算法],以中括号内的内容为主题,写一篇1500-2000字文章,一步一步回答一、引言逻辑回归是一种常用的分类算法,广泛应用于各个领域。在机器学习和统计学中,逻辑回归用于预测离散型变量的结果,并通过概率值来描述分类结果。本文将详细介绍逻辑回归算法的原理、模型、参数估计和模型评估等方面。二、逻辑回...

人工智能与机器学习考试 选择题 52题

2024-09-30 00:33:04

1. 什么是人工智能的核心目标?   A. 创建智能机器   B. 提高计算机性能   C. 优化网络速度   D. 增强数据存储正则化回归算法2. 机器学习的主要类型不包括以下哪一项?   A. 监督学习   B. 无监督学习   C. 半监督学习 ...

时变参数向量自回归 stata

2024-09-30 00:30:41

时变参数向量自回归(time-varying parameter vector autoregression,TVP-VAR)是一种用于估计时间序列数据中参数随时间变化的模型。该模型在统计学和经济学等领域中被广泛应用,可以帮助研究者更准确地分析数据中的动态变化和相关因素。本文将针对时变参数向量自回归模型展开深入讨论,并探讨其在实际应用中的价值和意义。一、时变参数向量自回归模型概述时变参数向量自回归...

设备健康状态监测与预测模型的机器学习算法研究

2024-09-30 00:28:01

设备健康状态监测与预测模型的机器学习算法研究正则化回归算法随着科技的不断进步,设备健康状态监测与预测模型的研究和应用在工业领域中变得日益重要。通过实时监测设备的状态并进行预测,可以及时发现设备存在的问题,预防设备故障,提高设备的效能和可靠性。机器学习算法在设备健康状态监测与预测模型中发挥着重要作用,因为它可以通过对大量数据的学习和分析,提供准确的预测结果。首先,设备健康状态监测与预测模型需要依赖大...

基于回归模型的快速单幅图像去雾算法及系统

2024-09-30 00:26:51

(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 105654440 A(43)申请公布日 2016.06.08(21)申请号 CN201511021549.X(22)申请日 2015.12.30(71)申请人 首都师范大学    地址 100048 北京市海淀区西三环北路105号(72)发明人 尚媛园 栾中 周修庄 丁辉 付小雁 邵珠宏 赵晓...

机器学习算法在预测模型中的使用方法

2024-09-30 00:26:23

机器学习算法在预测模型中的使用方法机器学习是一种通过对大量数据进行分析和学习,以发现数据模式和关联性的方法。在预测模型中,机器学习算法可以帮助我们根据已有的数据来预测未来的结果或趋势。这些算法可以应用于各种领域,如金融、医疗、销售等,以提高预测准确性和效率。本文将介绍机器学习算法在预测模型中的使用方法,包括数据准备、算法选择、模型训练和结果评估。首先,为了使用机器学习算法建立预测模型,我们需要准备...

机器学习算法在时间序列预测中的应用

2024-09-30 00:25:21

机器学习算法在时间序列预测中的应用一、引言随着计算机技术的高速发展,大量的数据被持续地产生出来,这些数据中大多数都是时间序列数据。这些时间序列数据可以被看做是时间上连续的一系列数据点,被广泛应用于诸如金融、能源、医疗等多个领域。如何准确地预测时间序列数据,并且可以帮助人们作出准确的决策,一直是时间序列研究的热点问题。在此背景下,机器学习算法在时间序列预测中的应用也越来越广泛,成为了解决时间序列预测...

空间回归方法

2024-09-30 00:25:08

空间回归方法空间回归方法是统计学和地理信息系统(GIS)中常用的一种分析手段,用于研究空间数据中的依赖关系。它在传统线性回归模型的基础上,考虑了观测值之间的空间相关性,即临近的观测点之间可能存在某种形式的空间依赖或自相关。以下是一些主要的空间回归方法:1.空间滞后模型 (Spatial Lag Model, SLM): 在SLM中,因变量是其他空间位置上观测值的加权平均(通常是邻近区域的...

机器学习模型的训练和调优方法

2024-09-30 00:24:29

机器学习模型的训练和调优方法机器学习模型的训练和调优是在机器学习中至关重要的步骤。通过选择合适的算法、优化参数和数据预处理等方法,可以提高机器学习模型的性能和准确率。本文将介绍机器学习模型训练和调优的常用方法,并探索一些最佳实践。首先,让我们了解机器学习模型训练的基本步骤。在开始训练之前,需要准备一组标记好的数据作为训练集。训练集应涵盖要解决的问题的各个方面。首先,我们需要将数据集分成训练集和验证...

多项logistic回归算法

2024-09-30 00:20:25

多项logistic回归算法多项logistic回归算法是一种常用的分类算法,广泛应用于机器学习和数据分析领域。本文将介绍多项logistic回归算法的原理、应用和优缺点。正则化回归算法一、多项logistic回归算法原理多项logistic回归算法是一种广义线性回归模型的扩展,用于解决多类别分类问题。与二项logistic回归算法类似,多项logistic回归算法也基于logistic函数,将输...

机器学习模型的建立与评估方法

2024-09-30 00:20:14

机器学习模型的建立与评估方法随着计算机技术和算法的不断进步,机器学习技术已经广泛应用于各行各业。在机器学习中,模型的建立和评估是非常重要的环节。一、模型的建立模型的建立是机器学习中的一个非常关键的环节。在建立模型之前,需要进行数据的预处理,包括数据清洗、数据变换等步骤。数据预处理的好坏会直接影响到模型的建立效果。在建立模型时,需要选择合适的算法,并根据实际应用场景灵活调整算法参数。在选择算法时,需...

基于过采样Logistic回归模型的互联网贷款违约预测研究

2024-09-30 00:19:40

第24卷 第1期华北理工大学学报(社会科学版)V o l .24 N o .12024年01月J o u r n a l o fN o r t hC h i n aU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y(S o c i a l S c i e n c eE d i t i o n )J a n .2024收稿日期...

贝叶斯分类器与逻辑回归模型的比较与选择

2024-09-30 00:17:34

贝叶斯分类器与逻辑回归模型的比较与选择概述:在机器学习领域,分类是一个重要的任务。贝叶斯分类器和逻辑回归模型是两种常用的分类算法,它们在实践中被广泛应用。本文将比较贝叶斯分类器和逻辑回归模型的特点和优势,并探讨如何选择适合的算法。贝叶斯分类器:贝叶斯分类器是一种基于贝叶斯定理的概率模型。它假设特征之间是独立的,并使用贝叶斯定理根据特征向量计算后验概率,从而进行分类。贝叶斯分类器可以处理多分类问题,...

logisticregression 三分类

2024-09-30 00:16:47

逻辑回归的三分类问题正则化回归算法在机器学习中,三分类问题是一个常见的问题类型,其中目标变量有三个可能的类别。逻辑回归是一种广泛用于此类问题的算法。在三分类逻辑回归中,我们使用逻辑函数将线性回归的输出转换为概率,以便为每个类别分配一个概率值。1.工作原理逻辑回归基于一个前提,即数据中的因变量(也称为响应变量)是二元的或可转换为二元的。在三分类问题中,我们需要稍作调整。首先,我们需要使用一对多(On...

逻辑回归算法介绍

2024-09-30 00:16:36

逻辑回归算法介绍随着机器学习的发展,逻辑回归算法成为了人们研究的热点之一。逻辑回归是一种分类算法,经常被用于预测二元分类问题。它是基于统计的概率模型,并且具有良好的可解释性和实现简单等优点。在本文当中,我们将对逻辑回归算法的原理、应用以及常见的问题进行详细介绍。一、逻辑回归算法的原理逻辑回归的核心思想在于通过建立一个映射函数,将输入的特征向量映射成为一个对数几率函数,然后再将对数几率函数传递到“s...

lm贝叶斯正则化算法

2024-09-30 00:15:25

lm贝叶斯正则化算法一、引言贝叶斯正则化算法是一种经典的机器学习算法,它可以用于解决许多实际问题。在这篇文章中,我们将介绍LM贝叶斯正则化算法的基本原理、应用场景、优缺点以及实现方法。二、LM贝叶斯正则化算法的基本原理1. LM贝叶斯正则化算法概述LM贝叶斯正则化算法是一种用于线性回归问题的正则化方法,它通过引入先验分布来约束模型参数,从而提高模型的泛化能力。与传统的L1和L2正则化方法不同,LM...

利用机器学习算法进行交通流量预测

2024-09-30 00:11:53

利用机器学习算法进行交通流量预测交通流量作为城市交通管理和规划的重要指标之一,对于保障交通系统的高效运行和优化交通资源配置具有重要意义。而利用机器学习算法进行交通流量预测,可以为交通部门提供准确的流量数据,有助于制定合理的交通政策和优化交通规划。交通流量预测是指通过对历史交通流量数据的分析和建模,预测未来一段时间内道路上的车辆流量情况。利用机器学习算法进行交通流量预测的方法已经被广泛研究和应用,下...

逻辑回归的技巧

2024-09-30 00:07:14

逻辑回归的技巧正则化回归算法以下是一些逻辑回归的技巧:1. 特征工程:逻辑回归对输入特征的质量非常敏感。因此,在建模之前,需要对特征进行一些预处理,包括缺失值处理、特征转换、特征选择等。这有助于提高模型的性能。2. 正则化:逻辑回归容易受到过拟合的问题,因此使用正则化技术(如L1正则化或L2正则化)可以有效地控制模型的复杂度,防止过拟合。3. 多项式特征:通过引入多项式特征,可以捕捉数据中的非线性...

sklearn的逻辑回归算法

2024-09-30 00:04:44

sklearn的逻辑回归算法逻辑回归(Logistic Regression)是一种广义线性模型(Generalized Linear Model),经常用于二分类问题的建模和预测,也可以扩展到多分类问题。逻辑回归的原理是基于逻辑函数(logistic function)或称为sigmoid函数,将线性回归模型的输出转换为概率值。逻辑函数的公式为:g(z)=1/(1+e^(-z))其中,z是线性函...

基于GADF与卷积神经网络的滚动轴承故障诊断研究

2024-09-29 23:53:21

第38卷第5期2021年5月机㊀㊀电㊀㊀工㊀㊀程JournalofMechanical&ElectricalEngineeringVol.38No.5May2021收稿日期:2020-09-09基金项目:辽宁省自然科学基金资助项目(2019BS186)作者简介:刘红军(1971-)ꎬ男ꎬ辽宁沈阳人ꎬ副教授ꎬ硕士生导师ꎬ主要从事数字化制造技术方面的研究ꎮE ̄mail:133****8635@163....

基于深度学习的大规模客流预测算法研究

2024-09-29 23:53:08

基于深度学习的大规模客流预测算法研究随着城市快速发展和人口增加,公共交通成为最为常用的交通方式之一。然而,随着客流量持续攀升,如何有效地进行大规模客流预测成为了城市交通发展的关键问题之一。基于深度学习的大规模客流预测算法研究成为了人们关注的热点。一、深度学习在客流预测中的应用深度学习是一种机器学习的方法,其通过对特征的分层提取和抽象,能够获得更为复杂的模式和关系。因此,深度学习在客流预测中的应用成...

基于改进CNN的光热电场太阳直接法向辐射预测研究

2024-09-29 23:52:38

可再宝能源Renewable  Energy  Resources第39卷第2期2021年2月Vol.39 No.2Feb. 2021基于改进CNN 的光热电场太阳直接法向辐射预测研究杨德州1,李锦键2,吕金历1,杨维满2,王兴贵2(1.国网甘肃省电力公司经济技术研究院,甘肃兰州730000; 2.兰州理工大学电气工程与信息工程学院,甘肃兰州730050)摘要:为了在实际运行中...

MATLAB分类与预测算法函数

2024-09-29 23:52:12

MATLAB分类与预测算法函数1、glmfit()  功能:构建⼀个⼴义线性回归模型。  使⽤格式:b=glmfit(X,y,distr),根据属性数据X以及每个记录对应的类别数据y构建⼀个线性回归模型,distr可取值为:binomial、gamma、inverse gaussian、normal(默认值)和poisson,分别代表不同类型的回归模型。2、patternnet...

人工智能机器学习技术练习(习题卷11)

2024-09-29 23:51:46

人工智能机器学习技术练习(习题卷11)说明:答案和解析在试卷最后第1部分:单项选择题,共155题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]分箱用于处理()A)连续型数据B)离散型数据C)连续型和离散型数据即可2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签3.[单选题]关于回归问题,说法正确的是()A)可以不需要lab...

基于BERT模型的中文短文本分类算法

2024-09-29 23:51:21

第47卷第1期Vol.47No.1计算机工程Computer Engineering2021年1月January 2021基于BERT 模型的中文短文本分类算法段丹丹1,唐加山1,温勇1,袁克海1,2(1.南京邮电大学理学院,南京210023;2.圣母大学心理学系,美国南本德46556)摘要:针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer...

最新文章