神经网络
Hopfield网络对手写体数字识别的改进方法
Hopfield网络对手写体数字识别的改进方法计算机的功能非常强大,在处理图片方面也具有很好的性质。手写体图片的研究,在考古等方面有着重要的作用。本文的手写体图片是经多数人书写,保证了样本的差异性。在图片识别处理时,选用了识别性能较强的离散Hopfield网络,并针对Hopfield网络的特点,对手写体图片的进行中心归一化处理的改进,提高了识别效率。标签:中心归一化;Hopfield网络;图像识别...
模糊神经网络模型的改进与优化
模糊神经网络模型的改进与优化随着人工智能技术的不断发展,神经网络模型作为一种重要的机器学习方法,已经在许多领域取得了显著的成果。然而,传统的神经网络模型在处理不确定性和模糊性问题时存在一定的局限性。为了克服这些问题,研究人员提出了一种改进和优化传统神经网络模型的方法——模糊神经网络。 在传统神经网络中,输入和输出之间存在确定性映射关系。然而,在许多实际应用中,输入和输出之...
neural network image processing tool 使用-概述说明以及解释
neural network image processing tool 使用-概述说明以及解释1.引言正则化工具箱1.1 概述概述神经网络图像处理工具(Neural Network Image Processing Tool)是一种基于神经网络技术的图像处理工具,它能够通过学习和训练,对图像进行分析、处理和识别。随着人工智能和深度学习的快速发展,神经网络图像处理工具已成为图像处理领域的热门技术之...
深度学习网络结构的优化策略
深度学习网络结构的优化策略深度学习网络结构的优化策略是指在构建和设计深度学习模型时,如何选择和调整网络结构的方法与策略。在深度学习领域,网络结构是决定模型性能和表现的关键因素之一。本文将介绍一些常见的深度学习网络结构的优化策略。一、卷积神经网络(CNN)的优化策略卷积神经网络是一种特别适用于图像识别和计算机视觉任务的深度学习网络结构。在优化卷积神经网络时,可以采取以下策略:1. 深度与宽度的平衡:...
神经网络模型建立与调整方法改进
神经网络模型建立与调整方法改进神经网络模型是一种模拟人类神经系统运作的数学模型,通过对输入数据的处理和学习,能够实现识别、分类、预测等功能。在机器学习和深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、语音识别、自然语言处理等。然而,在实际应用中,构建和调整一个高效且稳定的神经网络模型并不是一件容易的事情。本文将介绍一些改进神经网络模型建立和调整方法的技术,旨在提高模型的性能和鲁棒性。一...
人工神经网络单选练习题
人工神经网络单选练习题一、基本概念1. 下列关于人工神经网络的描述,正确的是:A. 人工神经网络是一种静态的计算模型B. 人工神经网络可以模拟人脑的神经元连接方式C. 人工神经网络只能处理线性问题D. 人工神经网络的学习过程是监督式的2. 下列哪种算法不属于人工神经网络?A. 感知机算法B. 支持向量机算法C. BP算法D. Hopfield网络3. 人工神经网络的基本组成单元是:A. 神经元B....
MATLAB中的卷积神经网络与图像识别
MATLAB中的卷积神经网络与图像识别近年来,深度学习在图像识别领域取得了巨大的突破,而卷积神经网络(Convolutional Neural Networks)是其中最为重要的一种算法。而在MATLAB这一强大的科学计算软件中,通过神经网络工具箱可以轻松实现卷积神经网络,并且进行图像识别。本文将深入探讨在MATLAB中应用卷积神经网络进行图像识别的原理和方法。1. 卷积神经网络简介卷积神经网络是...
(整理)matlab仿真-利用Matlab构造BP神经网络完成变压器故障诊断._百...
利用Matlab构造BP神经网络完成变压器故障诊断a)样本数据:在油谱分析领域中,基于油中溶气体类型与内部故障性质的对应关系,以油中5种特征气体为依据的判断变压器故障的方法。其特征量为H2,CH4,C2H4,C2H2,C2H6,如图3所示。在对变压器的故障识别时,变压器的故障类型选择为:无故障、中低温过热、高温过热、低能放电和高能放电。b)仿真数据如图:c)在Matlab中完成人工神经网络的创建...
Matlab环境下基于神经网络的车牌识别
Matlab环境下基于神经网络的车牌识别一、本文概述随着科技的快速发展和智能交通系统(ITS)的广泛应用,车牌识别技术已成为现代城市管理、交通监控、违法查处等多个领域的关键技术之一。作为智能交通系统的核心组成部分,车牌识别技术旨在通过图像处理和计算机视觉的方法,从复杂多变的交通图像中准确地提取车牌信息,进而实现车辆的自动识别和跟踪。在众多的车牌识别方法中,基于神经网络的方法因其强大的特征提取和分类...
MATLAB中的神经网络与模型复杂度控制
MATLAB中的神经网络与模型复杂度控制引言神经网络是一种复杂的数学模型,已经在多个领域得到广泛应用,如图像处理、语音识别和自然语言处理等。在MATLAB中,神经网络工具箱提供了丰富的函数和工具,使得构建、训练和使用神经网络变得简单而高效。本文将探讨MATLAB中的神经网络以及如何控制模型复杂度。神经网络基础神经网络由神经元和它们之间的连接构成,每个神经元接收来自其他神经元的输入,并通过激活函数将...
BP神经网络字符识别系统Matlab建模及硬件实现
2019年第3期深■圳 职业技术学曉学扌艮No 3~2019D01:10.13899/jki.szptxb.2019.03.001BP 神经网络字符识别系统Matlab 建模及硬件实现**收稿日期:2018-09-03*项目来源:广东省优秀青年教师深圳职业技术学院配套资助(900705110201)作者简介:余菲(1982-),男,黑龙江人,副教授/高级技师,研究领域:集成电路设...
在MATLAB中使用卷积神经网络进行显著性检测
在MATLAB中使用卷积神经网络进行显著性检测引言显著性检测是计算机视觉领域的一个重要研究方向,其目标是在一张图像中确定视觉注意力区域。这一技术在图像处理、目标跟踪、图像编辑等方面具有广泛的应用。而卷积神经网络(Convolutional Neural Network,CNN)作为目前图像处理领域最为热门的算法之一,已经在显著性检测中取得了许多重要的突破。本文将介绍如何在MATLAB中利用CNN实...
基于MATLAB的动态神经网络稳定性仿真研究
基于MATLAB的动态神经网络稳定性仿真研究作者:田晓伟来源:《硅谷》2014年第05期 摘 要 动态神经网络的主要适用范围在于进行最优化运算和联想记忆,研究它的稳定性显得十分必要。文章主要是在分析了动态神经网络的稳定性分析理论之后,借助于MATLAB及LMI编写了仿真程序进行了实例验证。 ...
Matlab中的神经网络模型评估与调试
Matlab中的神经网络模型评估与调试很多科学家和工程师都需要使用神经网络模型进行数据分析和预测。而在实际应用中,我们常常需要评估和调试这些神经网络模型,以确保其性能和可靠性。在这篇文章中,我们将探讨如何在Matlab中进行神经网络模型的评估与调试。一、数据准备和模型训练在进行神经网络模型的评估与调试之前,首先需要准备好相应的数据集并完成模型的训练。通过Matlab提供的数据导入工具,我们可以方便...
基于BP神经网络的数控机床刀具磨损状态识别方法
基于BP神经网络的数控机床刀具磨损状态识别方法何一千,黄民,孙巍伟(北京信息科技大学机电工程学院,北京100192)摘要:为了提高三相电流信号监测刀具磨损状态的可靠性,提出了一种基于BP神经网络的数控机床刀具磨损状态识别方法。首先对采集得到的三相电流信号进行时域、频域和小波分析,从中提取出与刀具磨损程度相关性较好的多个特征量,组合成敏感特征向量,然后搭建BP神经网络,建立三相电流信号特征向量与刀具...
基于BP_神经网络的斜拉索损伤识别方法
收稿日期:2022-08-11ꎮ基金项目:国家自然科学基金项目(51378112)ꎻ福建省建设科技项目(2017-K-59)ꎮ作者简介:林友勤(1973 )ꎬ男ꎬ高级实验师ꎬ博士ꎬ研究方向为结构健康监测㊁损伤诊断与结构异常识别㊁桥梁检测和加固ꎮE ̄mail:lyq@fzu.edu.cnꎮ林友勤ꎬ郑学善ꎬ余印根ꎬ等.基于BP神经网络的斜拉索损伤识别方法[J].南昌大学学报(工科版)ꎬ2023ꎬ45(...
Matlab中的神经网络预测方法
Matlab中的神经网络预测方法引言神经网络是一种模拟人脑神经元的计算模型,通过构建输入层、隐藏层和输出层之间的连接,可以对复杂的非线性问题进行建模和预测。在Matlab中,有丰富的神经网络工具箱,提供了多种神经网络预测方法和算法。本文将介绍一些常用的神经网络预测方法,并说明其在Matlab中的实现原理和应用场景。一、前馈神经网络(Feedforward Neural Network)前馈神经网络...
模糊神经和模糊聚类的MATLAB实现
模糊神经和模糊聚类的MATLAB实现模糊神经网络(Fuzzy Neural Networks)是一种结合了模糊逻辑和神经网络的方法,用于处理不确定性和模糊性问题。它具有模糊逻辑的灵活性和神经网络的学习和优化能力。在MATLAB中,可以使用Fuzzy Logic Toolbox来实现模糊神经网络。下面将介绍如何使用MATLAB实现模糊神经网络。首先,我们需要定义输入和输出的模糊集合。可以使用Fuzz...
如何使用MATLAB进行神经网络建模
如何使用MATLAB进行神经网络建模使用MATLAB进行神经网络建模神经网络是一种模拟人脑神经系统运作的数学模型,它能够模拟人类的感知、学习和决策过程。在现代科学和工程领域,神经网络被广泛应用于诸如模式识别、图像处理、时间序列预测等问题的解决中。而MATLAB作为科学计算和数据分析的常用工具,也提供了一系列强大的神经网络建模工具。接下来,我们将介绍如何使用MATLAB进行神经网络建模。一、准备工作...
MATLAB神经网络与深度学习教程
MATLAB神经网络与深度学习教程神经网络与深度学习是当今计算机科学领域最热门的研究方向之一。在过去的几年中,深度学习通过其卓越的性能在众多领域中取得了突破性的进展,如图像识别、语音识别、自然语言处理等。MATLAB作为一种功能强大的科学计算软件,在神经网络和深度学习领域也有着广泛的应用。本文将以MATLAB为基础,介绍神经网络和深度学习的基本理论和实践。第一章:MATLAB简介1.1 MATLA...
图神经网络模型调参技巧详解(Ⅰ)
图神经网络模型调参技巧详解在深度学习领域,图神经网络(Graph Neural Networks, GNN)作为处理图数据的重要工具,近年来受到了越来越多的关注。然而,在应用图神经网络模型时,如何进行有效的模型调参一直是一个具有挑战性的问题。在本文中,我们将详细介绍图神经网络模型的调参技巧,以帮助读者更好地理解和应用这一领域的知识。一、选择合适的图神经网络模型在进行图神经网络模型的调参之前,首先需...
利用激活稀疏化的神经网络加速和嵌入压缩系统和方法[发明专利]
专利名称:利用激活稀疏化的神经网络加速和嵌入压缩系统和方法专利类型:发明专利发明人:严恩勖,王维申请号:CN201980054375.7申请日:20190621公开号:CN112585619A公开日:20210330专利内容由知识产权出版社提供摘要:用于(i)加快深度神经网络(DNN)的推理速度和(ii)将DNN产生的矢量表示从各种输入数据(诸如,图像、音频、视频,以及文本)中压缩出来的系统、方法...
稀疏编码与卷积神经网络的融合研究
稀疏编码与卷积神经网络的融合研究在机器学习领域,稀疏编码和卷积神经网络是两个非常重要的概念。稀疏编码是一种能够将输入数据表示为稀疏向量的技术,而卷积神经网络则是一种能够自动学习特征表示的深度学习模型。本文将探讨稀疏编码与卷积神经网络的融合研究,以及这种融合对于机器学习任务的影响。首先,我们来了解一下稀疏编码的基本原理。稀疏编码的目标是到一组基向量,使得输入数据能够用这些基向量的线性组合来表示。为...
神经网络中的半监督学习实践指南
神经网络中的半监督学习实践指南在机器学习领域中,半监督学习是一种介于有监督学习和无监督学习之间的方法。它利用有标签和无标签的数据来进行模型训练,以提高模型的性能。神经网络作为一种强大的机器学习工具,在半监督学习中也有着广泛的应用。本文将为读者提供一份神经网络中的半监督学习实践指南。首先,我们需要明确半监督学习的基本概念。在传统的有监督学习中,我们通常需要大量的有标签数据来训练模型。然而,标记数据的...
基于神经网络的三线性系统校正策略优化分析
基于神经网络的三线性系统校正策略优化分析概述:三线性系统是一类常见的非线性系统,具有广泛应用于工程领域的特点。校正三线性系统是优化控制的重要问题,可以提升系统的性能和精度。本文将探讨基于神经网络的三线性系统校正策略的优化分析,并介绍其原理、优势和应用前景。一、三线性系统的特点和问题:三线性系统是由三个变量(输入、状态和输出)之间存在非线性关系的系统。这种系统在一些工程领域中广泛存在,如机械控制系统...
多层感知器神经网络的训练算法优化与收敛性分析
多层感知器神经网络的训练算法优化与收敛性分析深度学习在人工智能领域中扮演着重要角,而多层感知器神经网络作为经典的深度学习模型,被广泛应用于图像识别、自然语言处理等领域。然而,多层感知器神经网络的训练过程通常需要大量的计算资源和时间,在实际应用中存在一定挑战。为了提高多层感知器神经网络的训练效果和速度,需要对训练算法进行优化,并对其收敛性进行深入分析。正则化参数的自适应估计首先,为了优化多层感知器...
基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测
第43卷 第3期2023年5月西安科技大学学报JOURNALOFXI’ANUNIVERSITYOFSCIENCEANDTECHNOLOGYVol.43 No 3May2023王清亮,代一凡,王旭东,等.基于ICEEMDAN LSTM BNN的短期光伏发电功率概率预测[J].西安科技大学学报,2023,43(3):593-602.正则化参数的自适应估计WANGQingliang,DAIYifan,W...
机械设计中的神经网络优化原理了解神经网络优化技术在机械工程中的应用...
机械设计中的神经网络优化原理了解神经网络优化技术在机械工程中的应用随着科技的快速发展和人工智能的兴起,神经网络优化技术在机械工程领域得到了广泛的应用。神经网络优化是将机器学习和优化方法相结合,通过神经网络模型来解决机械设计中的优化问题。本文将探讨神经网络优化的原理,并介绍其在机械工程中的应用。一、神经网络优化原理神经网络是一种模仿人脑神经系统的计算模型,它由大量的神经元以及连接这些神经元的权值构成...
dropout方法的作用
正则化包括dropoutdropout方法的作用Dropout方法的作用随着深度学习技术的快速发展,神经网络在各个领域都取得了显著的成果。然而,深度神经网络在处理大规模数据集和复杂任务时常常面临着过拟合的问题。过拟合指的是模型在训练集上表现出,但在测试集上表现较差的现象。为了解决这个问题,研究人员提出了一种名为Dropout的方法。Dropout是一种正则化技术,通过在训练过程中随机地将神经元的...
基于BP神经网络的高校课堂教学质量评价系统的研究与实现
基于BP神经网络的高校课堂教学质量评价系统的研究与实现一、本文概述随着信息技术的快速发展和技术的广泛应用,教学质量评价已经成为高校教学管理的重要环节。传统的教学质量评价方式往往依赖于人工打分和问卷调查,这种方法不仅效率低下,而且主观性强,难以保证评价的准确性和公正性。因此,研究和实现一种基于BP(反向传播)神经网络的高校课堂教学质量评价系统,对于提高教学评价的科学性、客观性和公正性,具有重要的理论...