688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

算法

逻辑回归算法毕业论文

2024-09-30 00:17:57

逻辑回归算法毕业论文逻辑回归是一种常见的分类算法,它可以将一个样本分为两个类别,即正类和负类。逻辑回归常用于二分类问题,在此基础上可以扩展到多分类问题。本文主要介绍逻辑回归算法的原理、应用以及优缺点。一、逻辑回归算法原理逻辑回归的核心是利用 sigmoid 函数将线性回归的结果映射到 0 到 1 的概率范围内,将其作为分类概率的估计值。sigmoid 函数的数学表达式为:$$sigmoid (z)...

逻辑回归算法介绍

2024-09-30 00:16:36

逻辑回归算法介绍随着机器学习的发展,逻辑回归算法成为了人们研究的热点之一。逻辑回归是一种分类算法,经常被用于预测二元分类问题。它是基于统计的概率模型,并且具有良好的可解释性和实现简单等优点。在本文当中,我们将对逻辑回归算法的原理、应用以及常见的问题进行详细介绍。一、逻辑回归算法的原理逻辑回归的核心思想在于通过建立一个映射函数,将输入的特征向量映射成为一个对数几率函数,然后再将对数几率函数传递到“s...

lm贝叶斯正则化算法

2024-09-30 00:15:25

lm贝叶斯正则化算法一、引言贝叶斯正则化算法是一种经典的机器学习算法,它可以用于解决许多实际问题。在这篇文章中,我们将介绍LM贝叶斯正则化算法的基本原理、应用场景、优缺点以及实现方法。二、LM贝叶斯正则化算法的基本原理1. LM贝叶斯正则化算法概述LM贝叶斯正则化算法是一种用于线性回归问题的正则化方法,它通过引入先验分布来约束模型参数,从而提高模型的泛化能力。与传统的L1和L2正则化方法不同,LM...

admm算法的原理及应用

2024-09-30 00:13:40

admm算法的原理及应用简介ADMM(Alternating Direction Method of Multipliers)算法是一种解决凸优化问题的迭代算法,广泛应用于机器学习、信号处理、图像处理等领域。本文将介绍ADMM算法的原理以及在不同应用领域的具体应用。原理ADMM算法是一种将原优化问题转化为一系列子问题来求解的方法。其基本思想是通过引入拉格朗日乘子,将原问题分解为多个子问题,并通过交...

求解第一类fredholm积分方程的一种新的正则化算法

2024-09-30 00:12:55

求解第一类fredholm积分方程的一种新的正则化算法本文将介绍一种新的正则化算法,用于求解第一类Fredholm积分方程。Fredholm积分方程作为数学中的一个极为重要的分支,广泛应用于数学、物理学和工程学等领域。然而,其解法一直以来都是一个难点,难以到一种完美的方法去求解。在过去的几十年中,人们一直在致力于解决这一难题,并尝试了几乎所有可行的方法。这些方法包括数值逼近、级数展开、Fouri...

支持向量回归算法公式例子

2024-09-30 00:12:17

支持向量回归算法公式例子    支持向量回归(Support Vector Regression,SVR)是一种机器学习算法,用于预测连续型变量。它基于支持向量机(SVM)算法,通过寻最大化间隔的方式来进行回归分析。SVR的公式可以用数学符号来表示,下面是SVR的公式以及一个简单的例子。    SVR的基本公式如下:    给定训练样本...

利用机器学习算法进行交通流量预测

2024-09-30 00:11:53

利用机器学习算法进行交通流量预测交通流量作为城市交通管理和规划的重要指标之一,对于保障交通系统的高效运行和优化交通资源配置具有重要意义。而利用机器学习算法进行交通流量预测,可以为交通部门提供准确的流量数据,有助于制定合理的交通政策和优化交通规划。交通流量预测是指通过对历史交通流量数据的分析和建模,预测未来一段时间内道路上的车辆流量情况。利用机器学习算法进行交通流量预测的方法已经被广泛研究和应用,下...

机器学习的分类与主要算法对比

2024-09-30 00:09:33

机器学习的分类与主要算法对⽐机器学习的分类与主要算法对⽐  ⾸先让我们瞻仰⼀下当今机器学习领域的执⽜⽿者:  这幅图上的三⼈是当今机器学习界的执⽜⽿者。中间的是Geoffrey Hinton, 加拿⼤多伦多⼤学的教授,如今被聘为“Google⼤脑”的负责⼈。右边的是Yann LeCun, 纽约⼤学教授,如今是Facebook⼈⼯智能实验室的主任。⽽左边的⼤家都很熟悉,Andre...

机器学习算法的分类与比较

2024-09-30 00:08:34

机器学习算法的分类与比较机器学习是人工智能领域的重要组成部分,它通过从数据中学习模式和规律,使计算机能够自动完成任务和做出决策。在机器学习中,算法的选择是非常关键的,不同的算法适用于不同的问题场景。本文将对机器学习算法进行分类与比较,帮助读者了解各种算法的优缺点及应用范围。一、监督学习算法监督学习是机器学习中最常用的方法之一,它通过已知输入和输出的训练数据,建立一个模型来预测新的输入数据的输出。以...

sklearn的逻辑回归算法

2024-09-30 00:04:44

sklearn的逻辑回归算法逻辑回归(Logistic Regression)是一种广义线性模型(Generalized Linear Model),经常用于二分类问题的建模和预测,也可以扩展到多分类问题。逻辑回归的原理是基于逻辑函数(logistic function)或称为sigmoid函数,将线性回归模型的输出转换为概率值。逻辑函数的公式为:g(z)=1/(1+e^(-z))其中,z是线性函...

backtracking算法实现正则表达式 python -回复

2024-09-30 00:04:09

backtracking算法实现正则表达式 python -回复正则表达式是一种强大而灵活的文本匹配工具,它可以用于比较和匹配字符串。在正则表达式中,通过使用不同的字符和符号,我们可以定义一个模式,然后将这个模式应用于我们希望匹配的字符串,以判断是否符合预期的格式。backtracking(回溯)算法是一种在搜索和遍历问题中常用的方法。它是一种深度优先算法,通过在问题的解空间中尝试不同的可能性,并...

MATLAB分类与预测算法函数

2024-09-29 23:52:12

MATLAB分类与预测算法函数1、glmfit()  功能:构建⼀个⼴义线性回归模型。  使⽤格式:b=glmfit(X,y,distr),根据属性数据X以及每个记录对应的类别数据y构建⼀个线性回归模型,distr可取值为:binomial、gamma、inverse gaussian、normal(默认值)和poisson,分别代表不同类型的回归模型。2、patternnet...

人工智能、机器学习及深度学习的起源和发展

2024-09-29 23:52:00

⼈⼯智能、机器学习及深度学习的起源和发展发展时间线第⼀阶段:⼈⼯智能起步期1956—1980s1956达特茅斯会议标志AI诞⽣1957神经⽹络Perceptron被罗森布拉特发明1970受限于计算能⼒,进⼊第⼀个寒冬第⼆阶段:专家系统推⼴1980s—1990s1980 XCON专家系统出现,每年节约4000万美元1986 BP ,Geoffrey Hinton提出了前馈算法,⼀个通过对输⼊数据按照...

人工智能机器学习技术练习(习题卷11)

2024-09-29 23:51:46

人工智能机器学习技术练习(习题卷11)说明:答案和解析在试卷最后第1部分:单项选择题,共155题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]分箱用于处理()A)连续型数据B)离散型数据C)连续型和离散型数据即可2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签3.[单选题]关于回归问题,说法正确的是()A)可以不需要lab...

CNN算法在语音识别中的实现及优化

2024-09-29 23:50:19

CNN算法在语音识别中的实现及优化随着时代的发展和科技的不断进步,计算机技术也在迅猛地发展,人工智能正逐渐成为了一个热门的话题。在人工智能领域中,语音识别技术是一个重要的方向。而在语音识别中,CNN算法的应用越来越受到人们的重视。本文将会对CNN算法在语音识别中的实现及优化进行探讨。一、CNN算法概述CNN算法也叫卷积神经网络,是深度学习中的一种神经网络模型,具有强大的特征抽取和自适应学习能力。C...

基于简单L12稀疏正则化的高光谱混合像元分解

2024-09-29 23:45:20

基于简单L12稀疏正则化的高光谱混合像元分解正则化可以产生稀疏权值高光谱图像解混方法中基于稀疏性的混合像元分解方法成为近来研究的热点,其中稀疏正则化高光谱混合像元分解方法(SUnSAL)得到了较好的解混效果。尽管如此,但正则化解的稀疏性和稳健性并不好。基于正则子比正则子更易于求解,同时比正则子具有更好的稀疏性和稳健性,本文引入用正则子来代替正则子。同时,采用了一种简单有效的稀疏正则化的求解方法,将...

基于正则化算法的高维数据分类技术研究

2024-09-29 23:40:49

基于正则化算法的高维数据分类技术研究第一章 绪论近年来,随着互联网技术和数据采集技术的快速发展,各种类型的数据呈爆炸式增长。高维数据分类技术已经成为数据挖掘和机器学习领域中最重要的问题之一。高维数据在分类任务中的困难与众不同之处在于,高维数据呈现稀疏和过拟合的问题。解决高维数据分类难题的一种有效方法是采用正则化算法。本文将对基于正则化算法的高维数据分类技术进行详尽探讨。第二章 高维数据分类算法2....

基于正则化模型的K—SVD算法及其应用

2024-09-29 23:36:21

基于正则化模型的K—SVD算法及其应用作者:刘坚桥 唐加山来源:《软件导刊》2018年第08期        摘要:提出一种基于正则化方法的K均值奇异值分解(K-SVD)算法。新算法在更新字典阶段,建立一种正则化模型,针对经典K-SVD算法中每次原子更新,引入正则项参与字典更新过程,将每次更新原子所产生的误差限制在设定范围内完成原子更新。在K-SVD算法正则...

基于稀疏约束的流形正则化概念分解算法

2024-09-29 23:34:31

基于稀疏约束的流形正则化概念分解算法1. 引言a. 稀疏约束的流形正则化在信息处理领域的重要性正则化可以产生稀疏权值b. 介绍本论文的核心:基于稀疏约束的流形正则化概念分解算法2. 背景知识a. 稀疏表达和约束的概念及其在信号处理中的应用b. 流形学习和正则化在数据降维和特征提取中的作用3. 方法描述a. 稀疏约束的流形正则化的基本思想和优化目标b. 稀疏约束的流形正则化与概念分解的结合c. 算法...

彩图像多尺度融合灰度化算法

2024-09-29 23:27:58

2021574彩图像灰度化是图像处理和计算机视觉领域的基本课题和重要前提,是将三维通道信息转换为一维灰度数据的过程。为了节约成本,人们仍使用黑白打印,并且许多出版物的大部分图片是灰度图像。生活中还存在很多更有艺术效果的黑白图像,由此衍生了灰度图像在艺术美学方面的应用,如中国水墨画渲染、黑白摄影等[1]。为了减少输入图像的信息量或者减少后续的运算量,都需要将彩图像进行灰度化处理,其在图像预处理等...

稀疏表示算法在图像处理中的应用

2024-09-29 23:21:49

正则化可以产生稀疏权值稀疏表示算法在图像处理中的应用图像处理一直是计算机视觉领域的重要研究方向之一,而稀疏表示算法则是近年来被广泛应用的一种方法。稀疏表示算法基于信号压缩的理论,试图从输入信号中提取一组具有最少数量部件的特征向量,进而实现信号的压缩和重建等多种功能。在图像处理中,稀疏表示算法可以用于图像压缩、降维、去噪、分割等多种任务,本文将详细介绍稀疏表示算法在图像处理方面的具体应用。一、图像压...

基于深度学习的图像识别算法实现

2024-09-29 23:18:08

基于深度学习的图像识别算法实现一、引言随着计算机技术的发展,深度学习作为一种新的人工智能技术已经逐渐走入人们的视野,被广泛应用于图像识别、语音识别、自然语言处理等领域。其中,基于深度学习的图像识别算法是目前最为热门的研究方向之一。本文将介绍基于深度学习的图像识别算法的实现方法以及其应用价值。二、图像识别算法的概述图像识别算法旨在通过对图像的分析和处理,自动识别图像中的目标物体或场景。传统的图像识别...

SL0分类稀疏表示的图像修复算法

2024-09-29 23:16:41

SL0分类稀疏表示的图像修复算法屠雅丽;唐向宏;张东;蔡倩;任玉升【摘 要】This paper proposes a novel image inpainting algorithm by SL 0 algorithm .Based on tradi‐tional SL0 algorithm ,it takes use of approximate hyperbolic tangent func...

稀疏编码的迭代算法详解

2024-09-29 23:13:30

稀疏编码的迭代算法详解正则化可以产生稀疏权值稀疏编码是一种用于数据压缩和特征提取的重要技术。它的核心思想是利用数据的冗余性,将数据表示为稀疏向量。稀疏编码的迭代算法是实现稀疏编码的一种常用方法,本文将详细介绍稀疏编码的迭代算法原理和步骤。稀疏编码的迭代算法主要包括两个步骤:字典学习和稀疏表示。字典学习是通过训练数据来学习一个字典,使得数据能够用字典中的基向量线性表示。稀疏表示是通过最小化数据与字典...

利用反向传播算法训练神经网络的方法和技巧

2024-09-29 22:56:26

利用反向传播算法训练神经网络的方法和技巧神经网络是一种模拟人脑神经元工作方式的计算模型,它在图像识别、自然语言处理等领域取得了重大突破。而训练神经网络的关键在于反向传播算法,它通过不断调整网络中的权重和偏置,使得网络能够更好地拟合训练数据。本文将介绍一些利用反向传播算法训练神经网络的方法和技巧。首先,为了训练神经网络,我们需要定义一个损失函数来衡量网络输出与真实标签之间的差距。常用的损失函数包括均...

python logisticregression参数

2024-09-29 22:56:01

python logisticregression参数“Python logistic regression参数”这句话指的是在使用Python中的逻辑回归(logistic regression)模型时,需要设置的参数。逻辑回归是一种常用的机器学习算法,用于分类问题。在Python中,通常使用scikit-learn库来实现逻辑回归。这个库提供了一些参数,可以用来调整逻辑回归模型的性能和准确度。...

adaboost过拟合解决方法

2024-09-29 22:48:08

adaboost过拟合解决方法正则化可以防止过拟合    Adaboost算法是一种常见的分类算法,该算法可以将多个弱分类器组成一个强分类器,实现非常高的分类准确率。但是,在实际应用中,Adaboost算法也存在着过拟合现象,即在训练数据上表现非常好,但在测试数据上表现不佳。    针对Adaboost算法的过拟合问题,可以采取以下解决方法:  &...

matlab盲去模糊算法 -回复

2024-09-29 22:47:43

matlab盲去模糊算法 -回复matlab盲去模糊算法是一种常用于图像处理领域的技术。在拍摄或传输过程中,图像往往会受到模糊的影响,导致细节失真或不清晰。盲去模糊算法可以有效地恢复原始图像的清晰度和细节。本文将一步一步地介绍matlab盲去模糊算法的原理和实现过程。I. 模糊图像的生成在进行盲去模糊算法之前,首先需要生成一个模糊图像。可以使用matlab内置的图像模糊函数,如imfilter或i...

决策树算法过拟合原因

2024-09-29 22:43:53

决策树算法过拟合原因    1、决策树算法对特征数据的选择过度敏感。决策树算法使用贪心算法,将训练数据中最易于拆分的特征作为分类特征,因此如果训练数据中有一些无关紧要的特征,决策树算法会误以为这些特征有分类意义,从而导致决策树算法过拟合。    2、决策树算法过深。决策树算法的拆分过程是逐层递归的,每一轮迭代都会选择最优特征来拆分,如果参数训练的过深,容易导...

机器学习期末测试练习题3

2024-09-29 22:33:07

一、单选题1、以下关于感知器算法与支持向量机算法说法有误的是A. 由于支持向量机是基于所有训练数据寻最大化间隔的超平面,而感知器算法却是相对随意的一个分开两类的超平面,因此大多数时候,支持向量机画出的分类面往往比感知器算法好一些。B.支持向量机是把所有训练数据都输入进计算机,让计算机解全局优化问题 C.感知器算法相比于支持向量机算法消耗的计算资源和内存资源更少 ,但是耗费的计算资源更多正则化可...

最新文章