算法
人工智能自然语言技术练习(试卷编号141)
人工智能自然语言技术练习(试卷编号141)1.[单选题]可以利用状态估计等功能,督导考核()维护工作。A)运行数据B)原始数据C)统计数据D)基础数据答案:D解析:2.[单选题]softmax又可以称为什么函数A)概率B)归一化C)损失函数D)空间答案:B解析:3.[单选题]支持向量机(SVM)是一个什么算法A)分类B)回归C)聚类D)降维答案:A解析:4.[单选题]当不知道数据所带标签时可以使用...
数据挖掘考试题及答案
数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的: - A. 错误 - B. 模式 - C. 异常 - D. 趋势 答案:B2. 以下哪项不是数据挖掘的常用算法: - A. 决策树 - B. 聚类分析 - C....
人工智能核心算法模拟习题含答案
人工智能核心算法模拟习题(含答案)1、图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是()、人脸识别等其他高层次视觉任务的基础A、物体检测B、图像分割C、物体跟踪D、行为分析答案:ABCD2、决策树分为两大类OoA、回归树B、分类树C、交叉树D、森林答案:AB3、关于学习器结合的描述,正确的是OoA、避免单学习器可能因误选而导致泛化性能不佳B、降低陷入局部极小点的风险C、...
2023年人工智能现代科技知识考试题与答案
2023年《人工智能》现代科技知识考试题与答案目录简介一、单选题:共40题二、多选题:共20题三、判断题:共26题一、单选题1、下列哪部分不是专家系统的组成部分?A .用户B.综合数据库C.推理机D.知识库正确答案:A解析:《人工智能导论》(第4版)作者:王万良出版社: 高等教育出版社2、下列哪个神经网络结构会发生权重共享?A.卷积神经网络B.循环神经网络C.全连接神经网络D. A 和 正则化描述...
拉索的原理
拉索的原理拉索(Lasso)是一种用于数据挖掘和统计分析的机器学习算法,它常被用来进行特征选择和模型正则化。拉索的全称是Least Absolute Shrinkage and Selection Operator,它通过对模型系数进行惩罚来实现特征选择和模型简化。在实际应用中,拉索可以帮助我们发现最重要的特征,并且可以减少模型的复杂性,提高预测的准确性。拉索的原理主要基于对模型系数的惩罚,它通过...
机器学习技术中的支持向量回归算法详解
机器学习技术中的支持向量回归算法详解支持向量回归(Support Vector Regression,SVR)是一种常用的机器学习技术,用于解决回归问题。它基于支持向量机(Support Vector Machine,SVM)算法,通过到一个最优的超平面来建立一个线性或非线性的回归模型。在本文中,我们将详细介绍支持向量回归算法的原理、特点和应用。支持向量回归算法的原理支持向量回归算法的原理与支持...
lasso算法公式
lasso算法公式正则化是最小化策略的实现 Lasso算法,全称Least Absolute Shrinkage and Selection Operator,是一种常用的特征选择和正则化方法。其数学公式如下所示: 给定数据集D={x1, x2, ..., xn},其中每个样本xi包含p个特征{x1i, x2i, ..., xpi},对应的响应变...
特征选择算法matlab代码
特征选择算法是指通过对数据进行分析和处理,从中选择出最具代表性和区分度的特征,以用于构建模型或进行分类。在机器学习和数据挖掘领域,特征选择算法是非常重要的一部分,能够帮助我们提高模型的效果和准确性。在本文中,我们将详细介绍特征选择算法的原理和常用的方法,并给出相应的matlab代码示例。一、特征选择算法的原理特征选择算法的本质是从原始特征中挑选出最具代表性和区分度的特征,以降低数据维度、提高模型训...
交替方向乘子法(admm)优化最小信息熵的变分模态分解算法
交替方向乘子法(admm)优化最小信息熵的变分模态分解算法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tip...
机器学习算法中的特征选择方法简介
机器学习算法中的特征选择方法简介随着大数据时代的到来,机器学习算法已经被广泛应用于各个领域。然而,在应用机器学习算法之前,我们需要对数据进行预处理,其中最重要的一步就是特征选择。特征选择是指选择对分类或回归任务有重要作用的特征,同时去除那些无关或冗余的特征,从而提高学习算法的性能。本文将介绍机器学习算法中的几种常用特征选择方法。1. Filter方法Filter方法是一种直接将特征与目标变量之间的...
集成学习
集成学习1.集成学习简介1)通过构建并结合多个学习器来完成学习任务: 先产生一组“个体学习器”(individual learner),再用某种策略将它们结合起来。其中每个IL由一个现有的学习算法从训练数据中产生,如:C4.5决策树算法、BP神经网络等。 2)性能:集成学习器的能力和个体学习器有很大关系,个体学习器本身在具有一定“准确性”的同时,还要有“多样性”,学习器间要具有差异。 产...
基于矩阵分解和聚类的混合推荐算法研究
基于矩阵分解和聚类的混合推荐算法研究基于矩阵分解和聚类的混合推荐算法研究摘要:随着互联网技术的不断发展和普及,推荐系统成为了电子商务和社交网络中的一种重要应用。然而,传统的协同过滤方法难以解决“冷启动”和“长尾”问题。为了解决这些问题,本文提出了一种基于矩阵分解和聚类的混合推荐算法。该算法采用了矩阵分解的方法对用户-物品评分矩阵进行降维处理,同时利用聚类算法将用户和物品划分到不同的组别中,从而实现...
地震资料快速两步插值算法
2020年10月第55卷 第5期 *四川省成都市成华区二仙桥东三路1号成都理工大学地球物理学院,610059。Email:liyong07@cdut.cn本文于2019年12月30日收到,最终修改稿于2020年6月9日收到。本项研究受国家科技重大专项“大型油气田及煤层气开发重大专项———时频聚集流体识别方法研究”(2016ZX05026001-004)、四川省重点研发计划项目“基于人工智能去噪的...
人工智能自然语言技术练习(习题卷13)
人工智能自然语言技术练习(习题卷13)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]关于梯度下降是一个什么样的算法,什么样的思想,下列说法正确的是A)迭代优化B)一次求解C)求解函数最大值D)迭代求代价函数最小值答案:A解析:2.[单选题]下列 Python 中的预定义字符描述正确的是( )。A)\w:与\W 反义,非数字、非字母和非字B)\s:空白字符C...
机器学习黄海广老师期末考试-答题记录(得分100分)
机器学习黄海⼴⽼师期末考试-答题记录(得分100分)机器学习期末考试得分:100分(欢迎讨论评论)1.单选(2分)⼀监狱⼈脸识别准⼊系统⽤来识别待进⼊⼈员的⾝份,此系统⼀共包括识别4种不同的⼈员:狱警,⼩偷,送餐员,其他。下⾯哪种学习⽅法最适合此种应⽤需求:A.K-means聚类问题B.回归问题C.⼆分类问题√ D.多分类问题2.单选(2分)以下哪种技术对于减少数据集的维度会更好?√ A.删除缺少...
备件需求预测方法研究
68备件需求预测方法研究备件需求预测方法研究*Research on Spare Parts Dema n d Forecasti ng Method龙灏向静文晋旭博(北京交通大学,北京100044)摘要:备件在各领域中都起着至关重要的作用,对企业各种备件需求的可靠预测可以节约成本,提升企业的经济效益。研究采用随机森林、线性回归、XGBoost、AdaBoost、梯度提升树和模型融合6种算法,根据...
自适应时间窗心磁源重构的方法研究
自适应时间窗心磁源重构的方法研究 【摘要】 心磁源重构技术在心脏病诊断中起着重要作用,然而传统方法存在时间窗选择困难、重构精度不高等问题。为解决这些问题,本文提出了一种基于自适应时间窗的心磁源重构方法。首先介绍了自适应时间窗心磁源重构的原理,然后详细阐述了相关算法和时间窗优化策略。实验设计与结果分析展示了该方法在心脏病诊断中的应用效果。通过性能评...
一种基于正则化方法的非负矩阵分解算法研究与应用
[收稿日期]2019-12-19[基金项目]高校优秀青年骨干人才国内访学研修项目(项目编号:gxgnfx2019165)。[作者简介]李小珍(1984-),女,安徽庐江人,讲师,主要研究方向为应用数学、深度学习。一种基于正则化方法的非负矩阵分解算法研究与应用李小珍(安徽国防科技职业学院,安徽六安237001)[摘要]信息化技术的快速发展为非负矩阵分解提供了更加广阔的应用空间,这种全新的矩阵分解及特...
机器学习的四大核心算法解析
机器学习的四大核心算法解析机器学习是人工智能领域的一个重要分支,通过让计算机具备自主学习和预测能力,使其能够根据过去的经验提供准确的决策和预测。在机器学习领域中,有四种核心算法起到了至关重要的作用,它们分别是监督学习、无监督学习、半监督学习和强化学习。以下将对这四大核心算法进行详细解析。一、监督学习监督学习是机器学习中最常见和最基础的算法之一。它是通过使用带有标签的训练数据来训练模型,并通过已知的...
hopcraftmoore算法
Hopcroft-Moore算法概述Hopcroft-Moore算法是一种用于解决最小化有限状态自动机(DFA)的算法。它由John Hopcroft和Robert Moore于1970年提出,目的是将给定的DFA转换为最小的DFA,以减少状态的数量并优化自动机的性能。DFA的最小化DFA是一种有限状态自动机,包括一组状态、一组输入符号、状态转换函数和一个起始状态以及一组接受状态。它可以用于模式匹...
Boosting算法之Adaboost和GBDT
Boosting算法之Adaboost和GBDT Boosting是串⾏式集成学习⽅法的代表,它使⽤加法模型和前向分步算法,将弱学习器提升为强学习器。Boosting系列算法⾥最著名的算法主要有AdaBoost和梯度提升系列算法(Gradient Boost,GB),梯度提升系列算法⾥⾯应⽤最⼴泛的是梯度提升树(Gradient Boosting Decision Tree,GBDT)...
机器学习_温州大学中国大学mooc课后章节答案期末考试题库2023年_百度文...
机器学习_温州大学中国大学mooc课后章节答案期末考试题库2023年1.GBDT由哪三个概念组成:( )参考答案:Regression Decision Tree(即 DT)_Gradient Boosting(即 GB)_Shrinkage(缩减) 2.对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。下面哪些模型属于线性模型?参考答案:K-means_k近邻_感知机 3.逻辑...
一种低秩和图正则化的协同稀疏高光谱解混
doi:10.3969/j.issn.1003-3106.2023.04.016引用格式:韩红伟,陈聆,苗加庆.一种低秩和图正则化的协同稀疏高光谱解混方法[J].无线电工程,2023,53(4):868-876.[HANHongwei,CHENLing,MIAOJiaqing.ALow rankandGraphRegularizationCollaborativeSparseHyperspectr...
结合形态学重建和超像素的多特征FCM分割算法
结合形态学重建和超像素的多特征FCM 分割算法①马喃喃, 刘 丛(上海理工大学 光电信息与计算机工程学院, 上海 200093)通讯作者: 马喃喃摘 要: 针对现有模糊聚类分割算法对噪声的鲁棒性差且提取的图像特征不充分等问题, 本文提出了一种结合形态学重建和超像素的多特征模糊 C-均值(FCM)分割算法. 首先, 利用形态学闭合重建处理原图像, 提高了算法的鲁棒性和细节保护能力. 其次...
分段正交匹配追踪(StOMP)算法改进研究
分段正交匹配追踪(StOMP)算法改进研究汪浩然;夏克文;牛文佳【摘 要】信号重构是压缩感知的核心技术之一,而其重构精度和所耗时长直接影响其应用效果.现今分段正交匹配追踪算法(StOMP)因耗时短而得到广泛应用,但也存在着重构精度差、稳定性低的缺点.提出一种基于粒子优化(PSO)算法且同时具有回溯特性的StOMP改进算法(ba-IWPSO-StOMP),即首先在StOMP算法的一次原子选择上,引...
机器学习的常见模型
机器学习任务中常见的方法有:决策树学习,关联规则学习,人工神经网络,深度学习,归纳逻辑设计,支持向量机,聚类,贝叶斯网络,强化学习,表示学习,相似度和度量学习,稀疏字典学习,遗传算法等。一、决策树学习决策树学习就是根据数据的属性采用树状结构建立的一种决策模型,可以用此模型解决分类和回归问题。常见的算法包括CART,ID3,C4.5等。可以根据数据集来构建一颗决策树,他的重要任务就是根据数据中所蕴含...
基于各向异性正则化的医学图像Demons配准算法研究
基于各向异性正则化的医学图像Demons配准算法研究 基于各向异性正则化的医学图像Demons配准算法研究 摘要医学图像配准是一项重要的任务,能够帮助医生准确分析和诊断疾病,促进个性化医疗的发展。本文主要研究了基于各向异性正则化的医学图像Demons配准算法,通过对不同模态的医学图像进行配准,提高了配准精度和稳定性。实验结果表明,该算法能够更好地...
基于RSSI优化的模型参数改进室内定位算法
基于RSSI优化的模型参数改进室内定位算法 1. 引言 1.1 背景介绍 由于室内环境复杂多变,信号受干扰影响较大,导致传统的RSSI定位算法存在定位精度不高、容易受到干扰等问题。对RSSI定位算法的模型参数进行优化改进,是提高定位准确性和稳定性的重要途径。 本研究旨在基于RSSI优化的模型参数...
强化学习算法中的稀疏表示学习方法详解(九)
强化学习算法中的稀疏表示学习方法详解强化学习是一种机器学习领域的方法,其目的是通过与环境的交互来学习如何做出最优的决策。在强化学习中,稀疏表示学习方法被广泛应用,它通过学习环境中的稀疏特征来提高学习效率和泛化能力。本文将详细介绍强化学习算法中的稀疏表示学习方法,包括其原理、算法和应用。1. 稀疏表示学习的原理稀疏表示学习是一种通过学习数据的稀疏表示来提取数据特征的方法。在强化学习中,环境的状态通常...
transformer优化算法概念
transformer优化算法概念Transformer优化算法概念引言:Transformer是一种基于注意力机制的神经网络模型,最初被应用于自然语言处理领域的机器翻译任务,相较于传统的循环神经网络模型,具有并行计算能力强、有效处理长序列等优势。在Transformer中,注意力机制被广泛应用并成为其核心组成部分。然而,Transformer模型的大规模训练和推断过程非常耗时,因此优化算法在Tr...