算法
基于OMP 算法的极化敏感阵列多参数估计
基于 OMP 算法的极化敏感阵列多参数估计谢菊兰;许欣怡;李会勇【摘 要】基于压缩感知的 DOA 估计方法在小快拍数下性能优越,并且具有天然的解相干能力,但在极化敏感阵列中运用很少。基于极化敏感阵列研究一种改进的 OMP 算法,能够成功估计出空域和极化域参数。该算法首先将极化敏感阵列信号接收矩阵重新建模,随后采用所提的改进 OMP 算法得到空域到达角估计结果。然后将求解出来的空域到达角代入到根据模...
算法优化的方法与步骤
算法优化的方法与步骤在计算机科学领域中,算法是指解决问题的一系列步骤。通过运用算法,我们可以为人们提供更好的体验和更高效的计算能力。然而,每一个算法都需要不断地进行优化,以保证其运行效率、可靠性和稳定性。下面将探讨一些算法优化的方法和步骤。第一步:理解问题和算法在进行算法优化之前,首先需要深入了解所要解决的问题和相应的算法。通过深入研究,可以了解算法的适用场景、复杂度和特点,并到适合特定场景的优...
四种TSVR型学习算法的性能比较
四种TSVR型学习算法的性能比较李艳蒙;范丽亚【摘 要】It is w ell know n that the computational complexity and sparsity of learning algorithms based on support vector regression machines (SVRs) are two main factors for analyzi...
基于YOLOv5的目标检测算法研究
基于YOLOv5的目标检测算法研究一、本文概述随着技术的不断发展,目标检测作为计算机视觉领域的关键技术之一,其应用场景也日益广泛。从智能安防、自动驾驶,到医疗影像分析、工业自动化等领域,目标检测都发挥着不可或缺的作用。其中,YOLOv5(You Only Look Once version 5)作为近年来备受关注的目标检测算法,其高效性和准确性得到了业界的广泛认可。本文旨在深入研究YOLOv5目标...
基于深度学习的人体动作识别和姿态估计算法研究
基于深度学习的人体动作识别和姿态估计算法研究 基于深度学习的人体动作识别和姿态估计算法研究 摘要:人体动作识别和姿态估计是计算机视觉领域的热门研究方向。随着深度学习算法的发展,基于深度学习的人体动作识别和姿态估计算法也取得了巨大的进展。本文主要研究了基于深度学习的人体动作识别和姿态估计算法,从数据集、网络结构、训练方法和评估指标等方面进行了深入探...
压缩感知的重构算法研究
image recovery and are able to recover textures efficiently and accurately.The nonlinear diffusion regularization is beneficial for preserving the edge of an image.We use three steps to solve the comp...
基于深度学习的图像识别算法改进
基于深度学习的图像识别算法改进随着计算机技术的不断发展和深度学习算法的兴起,图像识别算法已经成为了人工智能领域中的一个热门问题。它可以用来识别图像中的物体、文字、场景等信息,对很多领域都有着广泛的应用。然而,目前的图像识别算法还存在一些问题,比如准确率不高、鲁棒性差等,需要得到改进和优化。本文将基于深度学习的图像识别算法进行改进和优化,主要包括以下几个方面:数据预处理、模型构建和训练、模型评估和优...
极限梯度提升算法
极限梯度提升算法1 什么是极限梯度提升算法极限梯度提升算法(XGBoost)是一种先进的机器学习算法,由中国科学家陈天奇于2015年推出。它是梯度提升算法(GBDT)的一种高效实现,对于大型数据集和复杂模型的建立都具有出的效果。在各类数据竞赛中,XGBoost取得了许多优异的成绩,甚至成为了Kaggle 平台上最受欢迎的数据竞赛算法之一。2 XGBoost的优点XGBoost具有许多优点,其主要...
...的数学概念出发简述梯度下降算法的原理及其改进方法
从泰勒级数展开和梯度的数学概念出发简述梯度下降算法的原理及其改进方法梯度下降算法是一种常用的优化算法,它在机器学习和数据挖掘中被广泛应用。本文将从泰勒级数展开和梯度的数学概念出发,简述梯度下降算法的原理及其改进方法。1. 泰勒级数展开泰勒级数展开是数学中的一种重要工具,用于将一个函数表示为无穷级数的形式。假设函数f(x)在点a处具有连续的n阶导数,则可以使用泰勒级数展开将f(x)表示为:f(x)...
基于神经网络的电机控制算法设计与性能改进分析
基于神经网络的电机控制算法设计与性能改进分析近年来,随着人工智能技术的迅猛发展,神经网络在电机控制领域中的应用也越来越广泛。本文将探讨基于神经网络的电机控制算法设计与性能改进分析。正则化改进算法首先,基于神经网络的电机控制算法设计方面,我们可以采用多种类型的神经网络结构来实现电机的控制。其中,反向传播神经网络(BPNN)是最常用和成熟的一种。其原理是通过不断地反向传播误差,优化网络参数,从而实现电...
ECO跟踪算法中CNN分层插值及加权策略改进
高技术通讯2020年第30卷第6期:570-578doi:10.3772/j.issn.1002-0470.2020.06.004ECO跟踪算法中CNN分层插值及加权策略改进①陈志旺②王昌蒙③王莹宋娟彭勇(燕山大学工业计算机控制工程河北省重点实验室秦皇岛066004)(燕山大学国家冷轧板带装备及工艺工程技术研究中心秦皇岛066004)摘要本文是在深度特征与相关滤波相结合的高效卷积运算符(ECO)目...
图像盲复原
一、图像复原的变分方法图像在形成传输和存储的过程中都会产生失真,造成图像质量的退化,图像复原就是解决这些问题。(1)图像复原的变分方法一般来讲,图像的退化过程一般可描述为:f=Ru+n 1-(1) 其中n 表示加性Gauss 白噪声,R 表示确定退化的线性算子,通常是卷积算子。图像复原就是要尽可能的降低或消除观察图像f (x )的失真,得到一个高质量图像,根据最大似然原...
鲁棒深度学习优化算法的研究与实现
鲁棒深度学习优化算法的研究与实现深度学习作为一种强大的机器学习技术,已经在许多领域取得了令人瞩目的成果。然而,由于深度神经网络的复杂性和数据的不确定性,使得深度学习模型容易受到噪声和干扰的影响,导致模型的泛化能力下降。因此,如何提高深度学习模型的鲁棒性成为了研究的热点问题。深度学习优化算法是提高深度神经网络鲁棒性的关键。传统的基于梯度的优化方法,如随机梯度下降(SGD),虽然在许多任务上表现出,...
关于课题开题报告专家评议要点
关于课题开题报告专家评议要点一、问题的提出与背景(一)问题的提出大数据时代来临,信息量迅猛增长,人类获取数据的速度、密度、多样性、复杂性等特征都发生了翻天覆地的变化,对数据挖掘技术提出了更高的要求。在大数据背景下,人工智能(AI)技术作为一种新型技术,已经逐渐渗透到各个行业。数据挖掘作为AI技术的一种重要应用,对分析数据的价值和意义进行科学的研究,对促进信息化建设,指导企业管理,提高经济效益以及优...
近端策略优化算法的实施流程
近端策略优化算法的实施流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!正则化改进算法并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloa...
RIS_辅助去蜂窝大规模MIMO_系统低复杂度预编码算法设计
doi:10.3969/j.issn.1003-3114.2024.02.004引用格式:胡亚婷,史恩宇,许柏恺,等.RIS辅助去蜂窝大规模MIMO系统低复杂度预编码算法设计[J].无线电通信技术,2024,50(2):245-252.[HUYating,SHIEnyu,XUBokai,etal.LowComplexityPrecodingAlgorithmDesignforRIS aidedCe...
相关系数较高ruvseq批次效应算法校正
相关系数较高ruvseq批次效应算法校正全文共四篇示例,供读者参考第一篇示例:正则化改进算法 近年来,高通量测序技术的广泛应用使得生物学研究领域取得了前所未有的进展。由于批次效应等潜在的混杂因素的存在,有时会导致数据质量下降,从而影响到数据分析的准确性和可靠性。针对这一问题,研究人员提出了各种算法和方法来进行批次效应的校正。ruvseq是一种较为常用的批次效应校正算法,其...
MVDR波束形成算法的优化及其在电磁探测领域的应用
MVDR波束形成算法的优化及其在电磁探测领域的应用第一章 绪论在电磁探测领域,波束形成是一种常见的技术手段。在众多的波束形成算法中,MVDR(Minimum Variance Distortionless Response)算法是一种典型的自适应波束形成算法。它的特点是可以抑制信号干扰,提高目标信号的信噪比。但是,传统的MVDR算法在实际应用中存在一些问题,如计算复杂度高、稳定性差等,因此对MVD...
图像识别中的图像重建算法研究(四)
图像识别中的图像重建算法研究近年来,随着人工智能技术的飞速发展,图像识别技术得到了广泛应用。而在图像识别任务中,图像重建算法扮演着重要的角。本文旨在探讨图像重建算法在图像识别领域中的研究和应用。一、图像重建算法的定义图像重建算法,顾名思义,即通过已有的图像信息对图像进行重新构建。其核心任务是将图像中的噪声、失真或低分辨率等问题进行修复,从而提高图像质量和识别准确度。目前常见的图像重建算法包括基于...
基于改进ShuffleNetV2的织物颜恒常性算法
收稿日期:20221012基金项目:国家自然科学基金资助项目(51735010);西安现代智能纺织设备重点实验室项目(2019220614S Y S 021C G 043)㊂作者简介:杨必成(1995),男,山西临汾人,硕士研究生㊂通信作者:张团善(1969),男,湖北随州人,副教授,博士㊂E -m a i l :z h a n g t u a n s h a n @x pu .e d u .c...
深度强化学习算法的优化方法研究
深度强化学习算法的优化方法研究引言:深度强化学习是人工智能领域的前沿研究方向之一。它通过组合深度学习和强化学习的方法,使得智能系统能够通过与环境的交互学习和改进自身的决策策略。然而,深度强化学习算法的优化方法是当前研究的重要问题之一。随着深度学习和强化学习的迅猛发展,如何优化深度强化学习算法,提高学习效率和稳定性成为了研究者关注的焦点。一、模型基准与损失函数的选择深度强化学习模型的选择对于算法的性...
人脸识别技术的性能改进与优化策略
人脸识别技术的性能改进与优化策略人脸识别技术是一种基于面部图像或视频进行身份验证和识别的生物识别技术。随着科技的不断进步,人脸识别技术的应用越来越广泛,例如安全监控、人脸支付、门禁系统等。然而,人脸识别技术在实际应用中仍然面临一些挑战,例如光照条件、遮挡、年龄差异等因素会导致性能下降。因此,改进和优化人脸识别技术的性能至关重要。为了改进和优化人脸识别技术的性能,以下是几个策略:1. 多特征融合正则...
基于模式识别的手写数字识别算法研究
基于模式识别的手写数字识别算法研究1. 引言手写数字识别是计算机视觉领域中的一个重要研究课题,也是现代生活中广泛应用的一个方面。例如,银行支票自动识别、识别等都离不开手写数字的识别。因此,研究和改进手写数字识别算法具有重大的现实意义。本文将从基于模式识别的角度,对手写数字识别算法进行研究。2. 数据集介绍在进行手写数字识别算法的研究之前,我们需要获取一个有效的数据集。常用的手写数字数据集有...
随机森林算法优化研究
正则化改进算法随机森林算法优化研究 随机森林算法优化研究 随机森林(Random Forest)算法是一种集成学习方法,通过构建多个决策树并进行组合来进行分类或回归预测。随机森林算法在机器学习领域中广泛应用,因其在处理大规模数据集、高维特征和复杂问题时表现出的优势而备受研究者的关注。然而,随机森林算法在实际应用中仍然存在一些问题,如训练时间长、模...
基于PDSSD改进型神经网络的小目标检测算法
第38卷第1期2021年1月计算机应用与软件Computer Applications and SoftwareVol.38 No.1Jan.2021基于PDSSD改进型神经网络的小目标检测算法王鹏1陆振宇1詹天明2戴玉亮1芦佳11(南京信息工程大学电子与信息工程学院江苏南京210044)2(南京审计大学信息工程学院江苏南京211815)摘要SSD卷积神经网络一直对较小目标检测精度不佳。对此在SS...
结合改进用户聚类与LFM_模型的协同过滤推荐算法
文章编号:2095-6835(2023)17-0018-04结合改进用户聚类与LFM模型的协同过滤推荐算法顾明星1,张梦甜2(1.昆山市未成年人素质教育校外实践基地,江苏昆山215300;2.昆山市千灯中心小学校,江苏昆山215300)摘要:针对协同过滤算法推荐准确性低的缺点,提出了一种混合推荐算法。首先在协同过滤算法中,增加3个影响因子改进评分相似度,并预测用户第一评分;其次在AP(Affini...
多通道lms算法
多通道lms算法摘要:一、多通道LMS算法简介1.背景及意义2.算法原理二、多通道LMS算法在各领域的应用1.通信系统2.信号处理3.机器学习与人工智能三、多通道LMS算法的优缺点分析1.优点2.缺点正则化改进算法四、改进多通道LMS算法的研究与发展1.算法改进策略2.实际应用案例五、多通道LMS算法在我国的研究与应用前景1.产业现状2.发展趋势3.政策支持正文:一、多通道LMS算法简介1.背景及...
模型改造总结汇报材料模板
模型改造总结汇报材料模板模型改造总结汇报材料一、背景介绍在我们的研究项目中,我们使用了模型改造的方法来改进现有的模型,以提高其性能和效果。本文将对我们的改造过程进行总结和汇报,以及我们所取得的成果。二、问题分析在进行模型改造之前,我们首先对现有模型存在的问题进行了分析。我们发现现有模型在特定任务中的表现不佳,无法很好地处理复杂的数据模式和特征。因此,我们决定对该模型进行改造,以提高其性能和效果。三...
X-G算法
X-G算法1.什么是XGBoostXGBoost是陈先生等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree)。因为XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫...
图像复原研究报告
图像复原研究报告1 引言1.1 研究背景及意义随着科技的飞速发展,数字图像在各个领域得到了广泛应用,如医学成像、卫星遥感、安全监控等。然而,在图像的获取、传输和存储过程中,往往受到各种噪声和模糊的影响,导致图像质量下降。图像复原技术旨在从退化的图像中恢复出原始图像,对于提高图像质量、挖掘图像潜在信息具有重要意义。近年来,图像复原技术在计算机视觉、模式识别等领域取得了显著成果,但仍面临许多挑战,如噪...