688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

特征

基于端到端深度神经网络的语音情感识别研究

2024-10-02 03:23:45

广西师范大学学报(自然科学版)Journal  of  Guangxi  Normal  Universiiy  (Natural  Science  Edition)第39卷第3期2021年5月Vol. 39 No. 3May  2021DOI : 10.16088/j.issn.1001-6600.20200518...

融合MobileNet与Contextual_Transformer的人脸识别研究

2024-10-02 03:22:56

第14卷㊀第3期Vol.14No.3㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2024年3月㊀Mar.2024㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2024)03-0061-06中图分类号:TP391.41文献标志码:A融合MobileNet与ContextualTransformer的人脸识别研究陈经纬,熊继平,程汉权(浙江师范...

深入理解机器学习模型优化与调整原则

2024-10-02 03:19:44

深入理解机器学习模型优化与调整原则机器学习模型优化与调整是指在训练机器学习模型的过程中,通过调整模型参数和优化算法,以提高模型的性能和准确性。本文将从模型优化的基本原则、调参方法、特征选择和模型融合等方面进行深入探讨。一、模型优化的基本原则1.简化模型:简化模型可以防止过拟合,提高模型的泛化能力。常见的简化模型的方法有降低模型复杂度、减少特征维度、增加正则化项等。2.特征预处理:对原始特征进行合理...

pytorch layer函数

2024-10-02 03:19:19

pytorch layer函数    PyTorch是深度学习领域中广为使用的框架之一。PyTorch的layer函数是该框架中实现层级结构的重要组件。本文将围绕PyTorch的layer函数展开讨论,详细介绍layer函数的使用方法和常见场景。    首先我们需要了解什么是layer。Layer本质上是包含参数和操作的对象。它可以被视为输入在经过某个函数后...

机器学习技术如何处理共线性问题

2024-10-02 02:02:13

机器学习技术如何处理共线性问题共线性是机器学习中常见的问题之一。在建立模型时,如果输入变量之间存在高度相关性,即存在线性关系,就会导致共线性问题。共线性问题会对模型的性能和解释性产生负面影响,因此需要采取适当的技术手段来处理。首先,了解共线性问题的原因是十分重要的。共线性通常出现在回归模型中,主要由以下两种情况之一造成:第一种是输入特征之间存在高度线性相关性,即存在多个特征之间的线性组合关系。第二...

特征抽取中的数据标准化与规范化技巧

2024-10-02 01:43:44

特征抽取中的数据标准化与规范化技巧数据在如今的信息时代中扮演着至关重要的角。然而,原始数据往往是杂乱无章的,需要通过特征抽取来提取出有用的信息。在特征抽取的过程中,数据标准化与规范化技巧起着关键作用。本文将探讨特征抽取中的数据标准化与规范化技巧,并介绍几种常用的方法。数据标准化是将数据转换为特定的标准格式,以便更好地进行比较和分析。常见的数据标准化方法包括Z-score标准化和最小-最大标准化。...

支持向量机模型的数据标准化技巧

2024-10-02 01:39:50

在机器学习领域中,支持向量机(Support Vector Machine,SVM)是一种常用的分类算法。它通过创建一个最佳的决策边界,将数据分成两个不同的类别。然而,SVM在处理非标准化数据时可能会产生一些问题,因此数据标准化技巧对于提高SVM模型的性能至关重要。数据标准化是一种常见的数据预处理技术,它可以将不同特征之间的值范围统一,以便模型能够更准确地进行学习和预测。在SVM模型中,数据标准化...

机器学习中常见的数据预处理技巧(十)

2024-10-02 01:32:02

机器学习中常见的数据预处理技巧在机器学习领域,数据预处理是非常重要的一环。好的数据预处理可以帮助模型更好地学习特征和提高预测的准确性。而糟糕的数据预处理可能导致模型学习到错误的特征,从而影响最终的预测结果。因此,本文将介绍一些常见的数据预处理技巧,以帮助读者更好地理解和运用这些技巧。1. 数据清洗数据清洗是数据预处理的第一步,它主要是用来处理数据中的缺失值、异常值和重复值。缺失值是指数据中的某些字...

标准化算法

2024-10-02 01:27:43

正则化标准化标准化算法标准化算法是一种常用的数据预处理方法,旨在将不同特征之间的值范围进行统一,从而消除由于不同量纲带来的影响。标准化算法通过对原始数据进行线性变换,使得数据集的均值为0,标准差为1。常见的标准化算法包括Z-score标准化和Min-Max标准化。Z-score标准化(也称为零均值归一化)将每个数据点与整个数据集的均值进行比较,然后除以整个数据集的标准差。这样做可以将数据集转化为均...

优化机器学习算法收敛速度的技巧总结

2024-10-02 01:22:42

优化机器学习算法收敛速度的技巧总结机器学习算法的快速收敛对于许多应用来说至关重要。它可以帮助我们提高模型的准确性、节省计算资源和时间,以及加速实际应用的部署。然而,在实践中,我们经常遇到算法收敛速度不够快的情况。为了克服这个问题,我们可以采取一系列技巧来优化机器学习算法的收敛速度。本文将总结一些常用的技巧,帮助读者提高机器学习算法的效率和收敛速度。1. 特征缩放特征缩放是指将数据特征进行标准化,使...

文本特征抽取中的正则化与标准化技巧

2024-10-02 00:56:29

正则化系数一般取多少文本特征抽取中的正则化与标准化技巧文本特征抽取是自然语言处理领域中的重要任务,它的目标是从文本数据中提取有意义的特征以供后续的机器学习和数据分析任务使用。在进行文本特征抽取时,正则化和标准化是两个常用的技巧,它们可以帮助我们提高特征的质量和可解释性。正则化是一种通过对原始文本数据进行处理,使得特征向量的范数变得更小的技术。在文本特征抽取中,正则化的目的是减少特征向量的维度,降低...

图像识别中的特征选择方法综述

2024-10-02 00:02:20

图像识别早已成为当今信息技术领域的一个热门话题,而特征选择方法则是图像识别领域中的一项重要研究内容。特征选择作为数据预处理的关键环节,其目的是从原始特征中选取出最具代表性和有意义的一组特征,降低维度并提高分类或聚类算法的性能。本文将对图像识别中的特征选择方法进行综述,探讨其在实际应用中的优缺点以及未来的发展方向。一、特征选择方法的分类特征选择方法主要可以分为过滤法、包装法和嵌入法三类。其中,过滤法...

基于二进制鲁棒不变尺度关键点-加速稳健特征的自然特征虚实注册方法...

2024-10-01 23:16:32

2020⁃05⁃10计算机应用,Journal of Computer Applications2020,40(5):1403-1408ISSN 1001⁃9081CODEN JYIIDU http ://www.joca基于二进制鲁棒不变尺度关键点-加速稳健特征的自然特征虚实注册方法周翔1,2,唐丽玉1,2*,林定1,2(1.空间数据挖掘与信息共享教育部重点实验室(福州大学),福州3501...

基于鲁棒优化的模式识别方法研究

2024-10-01 22:45:32

基于鲁棒优化的模式识别方法研究正则化项鲁棒性模式识别是计算机科学中的一个重要领域,涉及到将特定的输入与已知的模式进行匹配,以便进行分类、识别和预测等任务。在实际应用中,模式识别方法的准确性和稳定性至关重要。本文将探讨基于鲁棒优化的模式识别方法的研究。鲁棒优化是一种用于处理不完美数据或不确定性因素的优化技术。在模式识别领域中,不完美数据或不确定性因素可能来自于数据采集过程中的噪声、遮挡、变形等情况。...

如何选择合适的特征在机器学习中进行有监督或无监督模型训练

2024-10-01 22:05:55

如何选择合适的特征在机器学习中进行有监督或无监督模型训练在机器学习中,选择合适的特征是进行有监督或无监督模型训练的关键步骤之一。特征选择能够帮助我们提取和使用最相关的特征,减少数据维度,提高模型的性能和效率。本文将分享一些关于如何选择合适特征的方法和技巧,以及它们在有监督和无监督学习中的应用。在机器学习中,特征通常表示为输入数据的某些属性或变量。这些特征对于模型的性能和预测能力至关重要。因此,我们...

211009304_基于XGBoost与LR_算法的95598重复来电行为研究

2024-10-01 21:35:52

Qiye Keji Yu Fazhan城市经济的高速发展,对电力的需求在达到峰值之前会越来越多,由此产生的数据也会呈现几何级数爆发式增长。在数据作为重要生产资料的当下,如何利用好数据,用数据分析结果驱动业务,对于行业发展尤为重要。在社会经济发展水平不断提升背景下,人们生活质量获得进一步提升,客户对电力服务的要求也越来越高。95598热线作为客户和供电企业展开交流沟通的主要方式。但近年来,居民使用电...

XGB算法梳理

2024-10-01 21:17:37

XGB算法梳理学习内容:1.CART树2.算法原理3.损失函数4.分裂结点算法5.正则化6.对缺失值处理7.优缺点8.应⽤场景9.sklearn参数1.CART树  CART算法是⼀种⼆分递归分割技术,把当前样本划分为两个⼦样本,使得⽣成的每个⾮叶⼦结点都有两个分⽀,因此CART算法⽣成的决策树是结构简洁的⼆叉树。由于CART算法构成的是⼀个⼆叉树,它在每⼀步的决策时只能是“是”或者“否...

决策树模型中的常见问题及解决方法(十)

2024-10-01 19:45:12

决策树模型是一种常用的机器学习算法,它具有直观的可解释性和良好的泛化能力。然而,在实际应用中,决策树模型也会面临一些常见的问题,例如过拟合、欠拟合和特征选择等。本文将分析并讨论这些常见问题,并提出相应的解决方法。1. 过拟合问题过拟合是指模型在训练集上表现很好,但在测试集上表现不佳的情况。在决策树模型中,过拟合通常是由于树的深度过大或者叶子节点过少引起的。一种常见的解决方法是剪枝,即通过控制树的深...

支持向量机与LASSO算法

2024-10-01 19:09:49

支持向量机与LASSO算法支持向量机(Support Vector Machine)和LASSO算法(Least Absolute Shrinkage and Selection Operator)是机器学习中常用的两个方法,分别用于分类和回归问题。它们在特征选择、泛化能力和模型稀疏性等方面具有独特的优势。首先,支持向量机是一种用于分类和回归的监督学习方法。支持向量机通过在特征空间中构建一个最优的...

基于YOLOv5的目标检测算法研究

2024-10-01 19:01:46

基于YOLOv5的目标检测算法研究一、本文概述随着技术的不断发展,目标检测作为计算机视觉领域的关键技术之一,其应用场景也日益广泛。从智能安防、自动驾驶,到医疗影像分析、工业自动化等领域,目标检测都发挥着不可或缺的作用。其中,YOLOv5(You Only Look Once version 5)作为近年来备受关注的目标检测算法,其高效性和准确性得到了业界的广泛认可。本文旨在深入研究YOLOv5目标...

ECO跟踪算法中CNN分层插值及加权策略改进

2024-10-01 18:58:00

高技术通讯2020年第30卷第6期:570-578doi:10.3772/j.issn.1002-0470.2020.06.004ECO跟踪算法中CNN分层插值及加权策略改进①陈志旺②王昌蒙③王莹宋娟彭勇(燕山大学工业计算机控制工程河北省重点实验室秦皇岛066004)(燕山大学国家冷轧板带装备及工艺工程技术研究中心秦皇岛066004)摘要本文是在深度特征与相关滤波相结合的高效卷积运算符(ECO)目...

人脸识别技术的性能改进与优化策略

2024-10-01 18:49:07

人脸识别技术的性能改进与优化策略人脸识别技术是一种基于面部图像或视频进行身份验证和识别的生物识别技术。随着科技的不断进步,人脸识别技术的应用越来越广泛,例如安全监控、人脸支付、门禁系统等。然而,人脸识别技术在实际应用中仍然面临一些挑战,例如光照条件、遮挡、年龄差异等因素会导致性能下降。因此,改进和优化人脸识别技术的性能至关重要。为了改进和优化人脸识别技术的性能,以下是几个策略:1. 多特征融合正则...

基于PDSSD改进型神经网络的小目标检测算法

2024-10-01 18:47:32

第38卷第1期2021年1月计算机应用与软件Computer Applications and SoftwareVol.38 No.1Jan.2021基于PDSSD改进型神经网络的小目标检测算法王鹏1陆振宇1詹天明2戴玉亮1芦佳11(南京信息工程大学电子与信息工程学院江苏南京210044)2(南京审计大学信息工程学院江苏南京211815)摘要SSD卷积神经网络一直对较小目标检测精度不佳。对此在SS...

模型改造总结汇报材料模板

2024-10-01 18:45:08

模型改造总结汇报材料模板模型改造总结汇报材料一、背景介绍在我们的研究项目中,我们使用了模型改造的方法来改进现有的模型,以提高其性能和效果。本文将对我们的改造过程进行总结和汇报,以及我们所取得的成果。二、问题分析在进行模型改造之前,我们首先对现有模型存在的问题进行了分析。我们发现现有模型在特定任务中的表现不佳,无法很好地处理复杂的数据模式和特征。因此,我们决定对该模型进行改造,以提高其性能和效果。三...

基于轻量化YOLOv5_算法的目标检测系统

2024-10-01 18:39:32

- 21 -高 新 技 术我国民航正进入高速发展关键时期,国内各机场航班数量逐渐呈现井喷增势,大型机场地面交通基本处于密集型高位运行。为了能够适应逐渐增加的运输压力,提高机场的整体运作管理效率,打造适用于机场的检测系统至关重要。计算机视觉技术成为场景检测的重要方法,而目标检测作为主要技术研究方向之一,可以对画面中目标所在位置进行精准定位,还拥有识别目标所属种类的技术能力[1]。智能技术不断创新,研...

resnet改进方法

2024-10-01 18:18:11

ResNet改进方法一、引言ResNet(残差网络)是一种非常成功的深度卷积神经网络,它在多个计算机视觉任务中取得了优秀的性能。然而,尽管ResNet在精度上取得了很大突破,但它仍然存在一些问题和不足之处。为了进一步改进ResNet的性能和效果,研究者们提出了许多创新的方法。本文将对其中一些重要的ResNet改进方法进行全面、详细、完整和深入地探讨。二、改进方法一:尺度处理在ResNet中,卷积层...

基于改进STANet_的遥感图像变化检测算法

2024-10-01 18:14:00

doi:10.3969/j.issn.1003-3106.2024.05.019引用格式:王文韬,何小海,张豫 ,等.基于改进STANet的遥感图像变化检测算法[J].无线电工程,2024,54(5):1226-1235.[WANGWentao,HEXiaohai,ZHANGYukun,etal.RemoteSensingImageChangeDetectionAlgorithmBasedonIm...

baseline state-of-the-art method -回复

2024-10-01 18:06:53

baseline state-of-the-art method -回复什么是基准(baseline)?在机器学习和计算机视觉领域,基准(baseline)是指在给定任务上已经被广泛接受和普遍使用的最好的方法或模型。它可以作为其他新方法或模型的比较标准,用于评估它们的性能和改进程度。基准方法通常具有合理的性能,并经过充分的验证和验证。什么是现有的最先进方法(state-of-the-art)?现有...

神经因子分解机推荐模型改进研究

2024-10-01 18:06:17

神经因子分解机推荐模型改进研究    神经因子分解机(Neural Factorization Machine,NFM)是一种结合神经网络和因子分解机的模型,在推荐系统中取得了不错的效果。随着推荐系统的发展和应用场景的变化,原始的NFM模型也存在一些局限性,因此需要对其进行改进研究。    一、NFM模型简介    神经因子分解机(Neu...

建模比赛模型改进方案

2024-10-01 18:03:29

建模比赛模型改进方案模型改进方案:1.改进算法:当前模型所采用的算法可能存在一定的限制,可以尝试使用其他算法进行建模。比如,替换为深度学习算法,如卷积神经网络(CNN)或循环神经网络(RNN)。这些算法在处理图像、文本和时间序列数据方面有很强的表现力,可以有效提高模型的准确性和泛化能力。2.增加特征:考虑引入更多的相关特征来丰富模型的信息。可以通过领域知识或数据挖掘的方法,到与目标变量相关的特征...

最新文章