688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

图像

改进的Tikhonov正则化图像重建算法

2024-09-30 00:19:27

改进的Tikhonov正则化图像重建算法温丽梅;周苗苗;李明;马敏【摘 要】Tikhonov正则化法可以解决电容层析成像中图像重建的病态问题,同时能够平衡解的稳定性与精确性,但其有效性和成像质量受到测量数据粗差的影响.改进的Tikhonov正则化法将2范数和M-估计结合,用一个缓慢增长的Cauchy函数代替最小二乘法的平方和函数,提高了估计稳健性和适应性.利用COMSOL和MATLAB软件对方法的...

admm算法的原理及应用

2024-09-30 00:13:40

admm算法的原理及应用简介ADMM(Alternating Direction Method of Multipliers)算法是一种解决凸优化问题的迭代算法,广泛应用于机器学习、信号处理、图像处理等领域。本文将介绍ADMM算法的原理以及在不同应用领域的具体应用。原理ADMM算法是一种将原优化问题转化为一系列子问题来求解的方法。其基本思想是通过引入拉格朗日乘子,将原问题分解为多个子问题,并通过交...

基于GADF与卷积神经网络的滚动轴承故障诊断研究

2024-09-29 23:53:21

第38卷第5期2021年5月机㊀㊀电㊀㊀工㊀㊀程JournalofMechanical&ElectricalEngineeringVol.38No.5May2021收稿日期:2020-09-09基金项目:辽宁省自然科学基金资助项目(2019BS186)作者简介:刘红军(1971-)ꎬ男ꎬ辽宁沈阳人ꎬ副教授ꎬ硕士生导师ꎬ主要从事数字化制造技术方面的研究ꎮE ̄mail:133****8635@163....

彩图像多尺度融合灰度化算法

2024-09-29 23:27:58

2021574彩图像灰度化是图像处理和计算机视觉领域的基本课题和重要前提,是将三维通道信息转换为一维灰度数据的过程。为了节约成本,人们仍使用黑白打印,并且许多出版物的大部分图片是灰度图像。生活中还存在很多更有艺术效果的黑白图像,由此衍生了灰度图像在艺术美学方面的应用,如中国水墨画渲染、黑白摄影等[1]。为了减少输入图像的信息量或者减少后续的运算量,都需要将彩图像进行灰度化处理,其在图像预处理等...

稀疏表示算法在图像处理中的应用

2024-09-29 23:21:49

正则化可以产生稀疏权值稀疏表示算法在图像处理中的应用图像处理一直是计算机视觉领域的重要研究方向之一,而稀疏表示算法则是近年来被广泛应用的一种方法。稀疏表示算法基于信号压缩的理论,试图从输入信号中提取一组具有最少数量部件的特征向量,进而实现信号的压缩和重建等多种功能。在图像处理中,稀疏表示算法可以用于图像压缩、降维、去噪、分割等多种任务,本文将详细介绍稀疏表示算法在图像处理方面的具体应用。一、图像压...

图像编码中的稀疏表示方法研究(四)

2024-09-29 23:19:53

图像编码是一项重要的图像处理技术,广泛应用于图像传输、存储和压缩等领域。稀疏表示作为图像编码的一种重要方法,得到了越来越多的关注和研究。本文将探讨图像编码中的稀疏表示方法,介绍其基本原理和主要应用。一、稀疏表示的基本原理稀疏表示是指利用尽可能少的基向量来表示一个信号或图像。在图像编码中,通常使用离散余弦变换(DCT)或小波变换等方法将图像转换到频域或者时-频域。然后,利用稀疏表示方法将这些系数进一...

基于深度学习的图像识别算法实现

2024-09-29 23:18:08

基于深度学习的图像识别算法实现一、引言随着计算机技术的发展,深度学习作为一种新的人工智能技术已经逐渐走入人们的视野,被广泛应用于图像识别、语音识别、自然语言处理等领域。其中,基于深度学习的图像识别算法是目前最为热门的研究方向之一。本文将介绍基于深度学习的图像识别算法的实现方法以及其应用价值。二、图像识别算法的概述图像识别算法旨在通过对图像的分析和处理,自动识别图像中的目标物体或场景。传统的图像识别...

SL0分类稀疏表示的图像修复算法

2024-09-29 23:16:41

SL0分类稀疏表示的图像修复算法屠雅丽;唐向宏;张东;蔡倩;任玉升【摘 要】This paper proposes a novel image inpainting algorithm by SL 0 algorithm .Based on tradi‐tional SL0 algorithm ,it takes use of approximate hyperbolic tangent func...

【学习笔记】【转载】YOLOv4与YOLOv5的创新点

2024-09-29 23:13:17

【学习笔记】【转载】YOLOv4与YOLOv5的创新点YOLOv4YOLOv4的三⼤贡献:1. 设计了强⼤⽽⾼效的检测模型,任何⼈都可以⽤ 1080Ti 和 2080Ti训练这个超快⽽精准的模型。2. 验证了很多近⼏年 SOTA 的深度学习⽬标检测训练技巧。3. 修改了很多 SOTA 的⽅法,让它们对单GPU训练更加⾼效,例如 CmBN,PAN,SAM等。作者⽤⼀个图概括了单阶段和双阶段⽬标检测⽹...

一种基于sigmoid变换的单帧图像快速超分辨方法

2024-09-29 23:13:04

(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 108492264 A(43)申请公布日 2018.09.04(21)申请号 CN201810195727.8(22)申请日 2018.03.09(71)申请人 中国人民解放军国防科技大学    地址 410073 湖南省长沙市开福区德雅路109号(72)发明人 林再平 王龙光 安玮 盛卫东 李...

使用人工智能开发技术构建图像风格转换模型

2024-09-29 23:12:38

正则化可以产生稀疏权值使用人工智能开发技术构建图像风格转换模型随着人工智能技术的迅速发展,图像风格转换成为了一门热门的研究领域。通过将一幅图像的风格转换为另一幅图像的风格,我们可以创建出具有独特艺术风格的图像,这给艺术家和设计师提供了新的创作方向。本文将介绍使用人工智能开发技术构建图像风格转换模型的过程。1. 数据收集与预处理在构建图像风格转换模型之前,我们首先需要收集训练数据。这些数据应包括具有...

基于模型预训练和网络正则的小样本高光谱图像分类

2024-09-29 22:59:39

基于模型预训练和网络正则的小样本高光谱图像分类    基于模型预训练和网络正则的小样本高光谱图像分类    摘要:随着高光谱成像技术的广泛应用,高光谱图像的分类问题备受关注。然而,面对小样本的高光谱图像分类任务,传统的深度学习方法面临着训练不充分和过拟合等挑战。本文提出了一种基于模型预训练和网络正则的方法来解决这个问题。具体地,我们首先使用大规模图像数据集进...

matlab盲去模糊算法 -回复

2024-09-29 22:47:43

matlab盲去模糊算法 -回复matlab盲去模糊算法是一种常用于图像处理领域的技术。在拍摄或传输过程中,图像往往会受到模糊的影响,导致细节失真或不清晰。盲去模糊算法可以有效地恢复原始图像的清晰度和细节。本文将一步一步地介绍matlab盲去模糊算法的原理和实现过程。I. 模糊图像的生成在进行盲去模糊算法之前,首先需要生成一个模糊图像。可以使用matlab内置的图像模糊函数,如imfilter或i...

手写数字识别原理(一)

2024-09-29 21:18:54

手写数字识别原理(一)手写数字识别原理解析1. 引言手写数字识别是一项经典的机器学习任务,其目标是通过计算机算法将手写的数字图像转换成对应的数字。该技术在识别、银行支票处理等领域有着广泛的应用。本文将从浅入深,分析手写数字识别的相关原理。2. 数据预处理在进行手写数字识别之前,我们首先需要对输入的图像进行预处理。常见的预处理方法包括: - 图像灰度化:将彩图像转化为灰度图像,减少处理的复...

红外与可见光图像特征点边缘描述与匹配算法

2024-09-29 21:17:49

红外与可见光图像特征点边缘描述与匹配算法1. 绪论:介绍红外与可见光图像的特点、研究背景和意义,以及本论文的研究内容和目的。2. 相关技术:阐述图像特征点的概念与常见算法,比较红外与可见光图像在特征提取上的区别。3. 红外与可见光图像特征点边缘描述算法:详细介绍红外与可见光图像特征点边缘描述算法的原理与步骤,包括SIFT、SURF、ORB等算法的优缺点分析。4. 红外与可见光图像特征点匹配算法:详...

多媒体技术与应用试题及答案

2024-09-29 20:40:32

多媒体技术与应用试题及答案单项选择题部分1.多媒体当中的媒体指的是以下哪种媒体(    )。A.表现媒体            B.表示媒体 C.感觉媒体              D.存储媒体2.以下的采样频率中哪个是目前音频卡所支持的(&n...

小样本学习Few-shotlearning

2024-09-29 20:38:22

⼩样本学习Few-shotlearningOne-shot learningZero-shot learningMulti-shot learningSparseFine-grained Fine-tune背景:CVPR 2018收录了4篇关于⼩样本学习的论⽂,⽽到了CVPR 2019,这⼀数量激增到了近20篇那么什么是⼩样本学习呢?在机器学习⾥⾯,训练时你有很多的样本可供训练,⽽如果测试集和你的...

人工智能深度学习技术练习(试卷编号191)

2024-09-29 20:32:47

人工智能深度学习技术练习(试卷编号191)1.[单选题]MNIST数据集的维度大小是()。A)20*20B)22*22C)26*26D)28*28答案:D解析:难易程度:易题型:2.[单选题]神经网络的三层网络结构包括()。A)输入层、中间层、输出层B)输入层、输出层、中间层C)输入层、隐藏层、输出层D)输入层、输出层、隐藏层答案:C解析:难易程度:易题型:3.[单选题]Mini-batch指的是...

基于L1范数优化模型的遥感图像条纹去除方法

2024-09-29 20:32:13

第40卷第2期2021年4月红外与毫米波学报J.Infrared Millim.Waves Vol.40,No.2 April,2021基于L1范数优化模型的遥感图像条纹去除方法李凯1,2,3,李文力1,2,3,韩昌佩1,2*(1.中国科学院上海技术物理研究所,上海200083;2.中国科学院红外探测与成像技术重点实验室,上海200083;3.中国科学院大学,北京100049)摘要:从条纹噪声的结...

人工智能训练师三级考试内容

2024-09-29 20:11:44

选择题:在机器学习项目中,数据预处理的主要目的是什么?A. 提高模型的准确率(正确答案)B. 减少模型的训练时间C. 增加数据的维度D. 简化模型的结构下列哪项不是深度学习模型的一种?A. 卷积神经网络(CNN)B. 循环神经网络(RNN)C. 支持向量机(SVM)(正确答案)D. 生成对抗网络(GAN)在进行模型训练时,为了防止过拟合,可以采取以下哪种策略?A. 增加训练数据的数量(正确答案)B...

基于生成对抗网络的卡通头像生成

2024-09-29 20:00:44

基于生成对抗网络的卡通头像生成随着互联网的快速发展,卡通头像作为一种有趣的表达方式,在社交媒体、游戏、影视等领域得到了广泛应用。卡通头像的生成也成为了一个富有挑战性的研究课题。本文旨在基于生成对抗网络(GAN)设计一个有效的卡通头像生成系统。在现有的研究中,卡通头像的生成方法主要包括基于绘画风格迁移、基于深度学习的方法和混合方法。这些方法普遍存在一些不足之处,如对训练数据的要求较高,生成的卡通头像...

如何利用AI技术进行图像超分辨率处理

2024-09-29 20:00:14

如何利用AI技术进行图像超分辨率处理引言:近年来,随着人工智能(Artificial Intelligence, AI)技术的不断进步和发展,图像超分辨率处理作为一项重要的图像处理技术逐渐受到广泛关注。图像超分辨率处理是指通过算法或模型,将低分辨率(Low Resolution, LR)的图像转化为高分辨率(High Resolution, HR)的图像。利用AI技术可以提高现有超分辨率算法的性能...

单幅图像的CNN超分辨率重建方法研究

2024-09-29 19:47:57

单幅图像的CNN超分辨率重建方法研究摘要:超分辨率技术是图像处理中的一个热门技术,其目的是提高图像的分辨率以获得更高的清晰度和更多的细节信息。虽然传统的插值方法可以实现图像的分辨率增强,但在保持细节信息方面表现不佳。近年来,基于深度学习的超分辨率技术获得了广泛关注,特别是使用卷积神经网络(Convolutional Neural Network,CNN)的超分辨率重建方法。本文针对单幅图像的超分辨...

全变分正则化和吉洪诺夫正则化

2024-09-29 19:46:31

标题:深度探讨全变分正则化和吉洪诺夫正则化近年来,全变分正则化和吉洪诺夫正则化在图像处理和机器学习领域备受关注。它们作为正则化方法,在求解问题中起到了至关重要的作用,具有广泛的应用前景。在本文中,将从深度和广度的角度出发,全面探讨这两种正则化方法的原理、特点和应用,帮助读者更深入地理解这一主题。一、全变分正则化全变分正则化是一种用于图像重构、解卷积和复原的正则化方法。该方法以其对边缘保持和去噪能力...

基于EfficientNet编码器的改进UNet模型电阻抗成像算法

2024-09-29 19:10:32

基于EfficientNet编码器的改进UNet模型电阻抗成像算法作者:万静 李兴五 高国忠来源:《电脑知识与技术》2024年第01期        关键词:电阻抗成像;EfficientUNet网络;图像重建;深度学习        0 引言        电阻抗成像(Elec...

一种低秩和图正则化的协同稀疏高光谱解混

2024-09-29 19:10:09

doi:10.3969/j.issn.1003-3106.2023.04.016引用格式:韩红伟,陈聆,苗加庆.一种低秩和图正则化的协同稀疏高光谱解混方法[J].无线电工程,2023,53(4):868-876.[HANHongwei,CHENLing,MIAOJiaqing.ALow rankandGraphRegularizationCollaborativeSparseHyperspectr...

结合形态学重建和超像素的多特征FCM分割算法

2024-09-29 19:09:40

结合形态学重建和超像素的多特征FCM 分割算法①马喃喃,  刘 丛(上海理工大学 光电信息与计算机工程学院, 上海 200093)通讯作者: 马喃喃摘 要: 针对现有模糊聚类分割算法对噪声的鲁棒性差且提取的图像特征不充分等问题, 本文提出了一种结合形态学重建和超像素的多特征模糊 C-均值(FCM)分割算法. 首先, 利用形态学闭合重建处理原图像, 提高了算法的鲁棒性和细节保护能力. 其次...

基于各向异性正则化的医学图像Demons配准算法研究

2024-09-29 19:08:43

基于各向异性正则化的医学图像Demons配准算法研究    基于各向异性正则化的医学图像Demons配准算法研究    摘要医学图像配准是一项重要的任务,能够帮助医生准确分析和诊断疾病,促进个性化医疗的发展。本文主要研究了基于各向异性正则化的医学图像Demons配准算法,通过对不同模态的医学图像进行配准,提高了配准精度和稳定性。实验结果表明,该算法能够更好地...

全变差正则化模型的噪声图像复原算法

2024-09-29 18:56:25

全变差正则化模型的噪声图像复原算法    全变差正则化模型的噪声图像复原算法    摘要:噪声图像复原是数字图像处理领域的重要任务之一。在实际应用中,图像往往会受到各种噪声的干扰,降低图像质量和视觉效果。全变差正则化模型是一种常用的图像复原方法,它通过最小化图像的总变差来以很好地去除噪声。本文将介绍全变差正则化模型的基本原理和算法,并结合具体的噪声图像复原实...

人工智能基础(习题卷28)

2024-09-29 18:56:12

人工智能基础(习题卷28)第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]在线性回归中,对回归系数的显著性检验采用()A)Z检验B)T检验;$F检验C)χ2检验答案:B解析:2.[单选题]人和机器最大的区别是什么?A)能动性B)人性C)思维D)计算答案:B解析:3.[单选题]启发式搜索是寻求问题( )解的一种方法A)最优B)一般C)满意D)最坏答案:C解析:...

最新文章