688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

图像

利用多层视觉网络模型进行图像局部特征表征的方法

2024-10-02 03:51:44

利用多层视觉网络模型进行图像局部特征表征的方法1. 绪论1.1 研究背景1.2 研究意义1.3 国内外研究现状正则化研究背景和意义1.4 本文内容概述2. 多层视觉网络模型2.1 单层模型2.2 多层模型2.3 模型训练方法3. 图像局部特征表征方法3.1 SIFT算法3.2 SURF算法3.3 ORB算法3.4 Feature Fusion方法4. 实验方法与结果4.1 数据集介绍4.2 实验设...

基于支持向量机参数优化的图像特征智能辨识

2024-10-02 03:45:49

基于支持向量机参数优化的图像特征智能辨识    【摘要】正则化研究背景和意义    本文旨在探讨基于支持向量机参数优化的图像特征智能辨识方法。在将介绍研究背景、研究意义和研究方法。随后,正文将详细介绍支持向量机(SVM)的基本概念、图像特征提取方法、支持向量机参数调优方法以及特征智能辨识模型的构建过程。通过实验结果分析来验证该方法的有效性。在将探讨支持向量机...

融合MobileNet与Contextual_Transformer的人脸识别研究

2024-10-02 03:22:56

第14卷㊀第3期Vol.14No.3㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2024年3月㊀Mar.2024㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2024)03-0061-06中图分类号:TP391.41文献标志码:A融合MobileNet与ContextualTransformer的人脸识别研究陈经纬,熊继平,程汉权(浙江师范...

grdirectcontext resetcontext -回复

2024-10-02 02:12:39

grdirectcontext resetcontext -回复如何使用深度学习模型进行图像分类任务?深度学习在计算机视觉领域取得了显著的突破,尤其是在图像分类任务上。本文将详细介绍如何使用深度学习模型进行图像分类,并以具体的步骤回答这个问题。第一步:数据收集和预处理在进行图像分类任务之前,我们需要收集大量的训练数据。这些数据应覆盖我们感兴趣的不同类别,以便模型能够学习它们之间的差异和特征。收集到...

CNN各层介绍范文

2024-10-02 01:39:14

CNN各层介绍范文CNN(卷积神经网络)是一种深度学习算法,主要用于图像识别和计算机视觉任务。CNN的结构由各个层组成,每个层都具有特定的功能和目的。以下是CNN各层的介绍:1. 输入层(Input Layer):该层用于接收原始图像数据。图像数据通常以像素点的形式表示,并通过该层进入神经网络。2. 卷积层(Convolutional Layer):这是CNN的核心层。卷积层通过使用一组可学习的过...

dsc和dice系数 -回复

2024-10-02 00:24:58

dsc和dice系数 -回复标题:深入理解DSC和Dice系数:一种量化图像分割性能的工具在图像处理和计算机视觉领域,评估和比较不同分割算法的性能是一项至关重要的任务。其中,DSC(Dice相似系数)和Dice系数是两种常用的评价指标。本文将详细解析这两者的基本概念、计算方法以及应用场合。一、基本概念1. DSC(Dice Similarity Coefficient):又称Sørensen-Di...

散焦图像的深度恢复方法综述

2024-10-02 00:01:42

散焦图像的深度恢复方法综述作者:吴秋峰 王宽全来源:《智能计算机与应用》2013年第06期        摘要:散焦图像的深度恢复是根据两幅散焦图像模糊程度不同的特点,从两幅散焦图像恢复场景的深度信息,该方法已成功应用于工业检测、医学和军事等领域。结合国内外相关进展,主要论述了被动式散焦图像的深度恢复的确定性方法、统计方法、正则化方法和偏微分方程方法,并且分...

综述论文:对抗攻击的12种攻击方法和15种防御方法

2024-10-01 23:56:46

综述论⽂:对抗攻击的12种攻击⽅法和15种防御⽅法这篇⽂章⾸次展⽰了在对抗攻击领域的综合考察。本⽂是为了⽐机器视觉更⼴泛的社区⽽写的,假设了读者只有基本的深度学习和图像处理知识。不管怎样,这⾥也为感兴趣的读者讨论了有重要贡献的技术细节。机器之⼼重点摘要了第 3 节的攻击⽅法(12 种)和第 6 节的防御⽅法(15 种),详情请参考原⽂。尽管深度学习在很多计算机视觉领域的任务上表现出⾊,Szeged...

3D图像融合技术还原人脸的创新

2024-10-01 23:26:47

3D图像融合技术还原人脸的创新1、什么是人脸三维重建人脸三维重建就是建立人脸的三维模型,它相对于二维人脸图像多了一个维度,在电影,游戏等领域应用广泛。目前获取人脸三维模型的方法主要包括三种,软件建模,仪器采集与基于图像的建模。(1)软件建模作为最早的三维建模手段,现在仍然是最广泛地在电影,动漫行业中应用。顶顶大名的3DMax就是典型代表,作品如下图。(2)由于手工建模耗费大量的人力,三维成像仪器也...

基于SDN-GMM网络的低剂量双能CT投影数据去噪方法

2024-10-01 23:25:18

第54卷 第9期 2021年9月天津大学学报(自然科学与工程技术版)Journal of Tianjin University (Science and Technology )V ol. 54  No. 9Sep. 2021收稿日期:2020-06-18;修回日期:2020-08-31.  作者简介:史再峰(1977—  ),男,博士,副教授.  通信...

基于二进制鲁棒不变尺度关键点-加速稳健特征的自然特征虚实注册方法...

2024-10-01 23:16:32

2020⁃05⁃10计算机应用,Journal of Computer Applications2020,40(5):1403-1408ISSN 1001⁃9081CODEN JYIIDU http ://www.joca基于二进制鲁棒不变尺度关键点-加速稳健特征的自然特征虚实注册方法周翔1,2,唐丽玉1,2*,林定1,2(1.空间数据挖掘与信息共享教育部重点实验室(福州大学),福州3501...

基于深度学习的食用菌分类研究

2024-10-01 23:02:26

文章编号:1673-887X(2023)09-0102-03基于深度学习的食用菌分类研究官飞,许韬(福建林业职业技术学院智能制造系,福建南平353000)摘要在介绍基于传统提取特征的食用菌分类方法基础上,通过利用卷积神经网络对食用菌进行深度分类的过程,阐述了基于深度学习的食用菌分类方法。试验数据证明深度学习方法在食用菌分类任务上取得了较高的准确率,明显优于传统的提取特征图像识别分类方法。关键词食用...

如何评估图像识别系统的鲁棒性(二)

2024-10-01 23:00:58

图像识别系统的鲁棒性是评估其能否准确识别各种不同场景下的图像的重要指标。一个鲁棒性强的图像识别系统能够在复杂的环境中稳定工作,不受光照、噪声、遮挡等因素的干扰。本文将通过介绍图像识别系统的鲁棒性评估方法、相关技术和未来发展趋势等方面展开论述。一、数据集构建准确评估图像识别系统的鲁棒性需要一个全面和多样性的数据集。这个数据集应该包含各种不同场景下的图像,涵盖不同光照条件、视角、尺度、遮挡程度等因素。...

图像处理算法的鲁棒性和准确性优化研究

2024-10-01 22:46:47

图像处理算法的鲁棒性和准确性优化研究正则化项鲁棒性图像处理是计算机视觉领域的重要研究方向之一。鲁棒性和准确性是图像处理算法优化的两个关键目标。本文将针对图像处理算法的鲁棒性和准确性进行深入探讨,并提出一些优化研究的方法和思路。首先,我们来了解一下图像处理算法的鲁棒性和准确性的概念。鲁棒性是指算法对于输入图像中存在的噪声、模糊、失真等各种干扰因素的抵抗能力。准确性则是指算法能够准确地识别和处理图像中...

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学...

2024-10-01 22:42:02

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学鲁棒性优化的原理、评估方法及应用放射医学论文基础医学论文医学放射医学作为一门重要的医学分支,应用广泛且发展迅猛。在放射医学的实践中,为了保证诊断结果的准确性和稳定性,提高影像质量和疾病诊断的可信度,鲁棒性优化成为一种重要的手段。本论文将着重探讨鲁棒性优化的原理、评估方法以及其在放射医学中的应用。一、鲁棒性优化原理鲁棒性优化是指在实际...

基于改进Inception网络的复杂环境下小样本黄瓜叶片病害识别

2024-10-01 20:11:49

第42卷 第3期正则化项是如何缓解过拟合的2023年5月华中农业大学学报Journal of Huazhong Agricultural UniversityVol.42    No.3May 2023,152~160基于改进Inception 网络的复杂环境下小样本黄瓜叶片病害识别满超1,2,饶元1,张敬尧3,乔焰3,王胜和21.安徽农业大学信息与计算机学院,合肥 23003...

机器学习技术中的生成对抗网络算法详解

2024-10-01 19:01:23

机器学习技术中的生成对抗网络算法详解生成对抗网络(GAN)是一种在机器学习中使用的强大算法,其独特的架构可以用于生成新的数据样本。GAN最初由伊恩·古德费洛在2014年提出,它结合了两个互相竞争的神经网络——生成器网络和判别器网络。生成器网络的目标是学习生成类似于训练数据的新数据样本。它以一个随机噪声向量作为输入,并通过一系列的转换层将噪声逐渐转化为与训练数据相似的样本。生成器的输出是一个虚拟样本...

使用深度学习算法改进图像识别的技巧

2024-10-01 18:59:55

使用深度学习算法改进图像识别的技巧深度学习算法在图像识别领域发挥着重要作用,其通过模拟人脑的神经网络结构,实现了对复杂图像的高效识别和分类。然而,要想进一步提升图像识别的准确性和效率,就需要掌握一些技巧和方法。本文将介绍一些使用深度学习算法改进图像识别的技巧。一、数据预处理在使用深度学习算法进行图像识别之前,首先需要对数据进行预处理。数据预处理的目的是去除噪声、增强图像特征,以提高算法的鲁棒性和准...

图像盲复原

2024-10-01 18:57:44

一、图像复原的变分方法图像在形成传输和存储的过程中都会产生失真,造成图像质量的退化,图像复原就是解决这些问题。(1)图像复原的变分方法一般来讲,图像的退化过程一般可描述为:f=Ru+n    1-(1) 其中n 表示加性Gauss 白噪声,R 表示确定退化的线性算子,通常是卷积算子。图像复原就是要尽可能的降低或消除观察图像f (x )的失真,得到一个高质量图像,根据最大似然原...

图像识别中的图像重建算法研究(四)

2024-10-01 18:53:21

图像识别中的图像重建算法研究近年来,随着人工智能技术的飞速发展,图像识别技术得到了广泛应用。而在图像识别任务中,图像重建算法扮演着重要的角。本文旨在探讨图像重建算法在图像识别领域中的研究和应用。一、图像重建算法的定义图像重建算法,顾名思义,即通过已有的图像信息对图像进行重新构建。其核心任务是将图像中的噪声、失真或低分辨率等问题进行修复,从而提高图像质量和识别准确度。目前常见的图像重建算法包括基于...

图像复原研究报告

2024-10-01 18:43:17

图像复原研究报告1 引言1.1 研究背景及意义随着科技的飞速发展,数字图像在各个领域得到了广泛应用,如医学成像、卫星遥感、安全监控等。然而,在图像的获取、传输和存储过程中,往往受到各种噪声和模糊的影响,导致图像质量下降。图像复原技术旨在从退化的图像中恢复出原始图像,对于提高图像质量、挖掘图像潜在信息具有重要意义。近年来,图像复原技术在计算机视觉、模式识别等领域取得了显著成果,但仍面临许多挑战,如噪...

医学图像数据增强技术的研究现状与进展

2024-10-01 18:17:48

近年来,人工智能(artificial intelligence,AI)结合大数据的分析方法在医学图像领域得到长足发展并拥有强劲发展势头,截至目前为止,基于深度学习的图像识别系统已经覆盖病灶检测、病理诊断、放疗规划以及术后预测等几乎全部临床阶段,逐渐成为医生诊断的重要辅助技术手段[1]。其中一些样本量充足且易得的疾病诊断系统如基于X线的肺部筛查[2]、乳腺钼靶筛查[3]和基于CT影像的肺结节检测模...

基于NSCT的自适应阈值图像去噪算法

2024-10-01 18:17:23

基于NSCT的自适应阈值图像去噪算法作者:郑成旭 范学超 刘金龙来源:《科技创新导报》 2015年第2期    郑成旭  范学超  刘金龙    (长春理工大学  吉林吉林  130022)    摘  要:为了有效的去除图像中的噪声,保护图像细节,在研究了非采样下Contourlet(N...

基于改进STANet_的遥感图像变化检测算法

2024-10-01 18:14:00

doi:10.3969/j.issn.1003-3106.2024.05.019引用格式:王文韬,何小海,张豫 ,等.基于改进STANet的遥感图像变化检测算法[J].无线电工程,2024,54(5):1226-1235.[WANGWentao,HEXiaohai,ZHANGYukun,etal.RemoteSensingImageChangeDetectionAlgorithmBasedonIm...

CT图像重建算法的改进和优化策略设计

2024-10-01 17:46:34

CT图像重建算法的改进和优化策略设计概述:计算机断层扫描(Computer Tomography,CT)是一种常见的影像技术,该技术通过对患者进行多个方向的 X 射线扫描来获得身体的断层图像。CT 图像重建算法的改进和优化策略是当前医学影像领域的研究热点之一,其目标是提高图像质量、减少辐射剂量和提高重建速度。本文将讨论一些常用的CT图像重建算法的改进和优化策略。一、滤波重建算法的改进:滤波重建算法...

图像处理中不适定问题

2024-10-01 17:30:00

图像处理中不适定问题作者:肖亮博士 发布时间:09-10-25 阅读:600 所属分类:默认栏目 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家、计算机视觉和图像处理学者广为关注的研究领域。数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19世纪就提出了不适定问题的概念:称一个数...

基于先验概率和统计形状的前列腺超声图像自动分割方法

2024-10-01 17:26:24

生物医学工程研究JournalofBiomedicalEngineeringResearch2015,34(1):15~19国家自然科学基金资助项目(61101026)。△通信作者 Email:nidong@szu.edu.cn基于先验概率和统计形状的前列腺超声图像自动分割方法黄建波,倪东△,汪天富(医学超声关键技术国家地方联合工程实验室,广东省生物医学信息检测与超声成像重点实验室,深圳大学医学院...

番茄花园

2024-10-01 16:11:41

这是PIL的官方手册,2005年5月6日发布。这个版本涵盖 PIL 1.1.5的全部内容。本中文手册来自 啄木鸟社区 你可以在PythonWare library到改文档其它格式的版本以及先前的版本。原版出处:www.pythonware/library/pil/handbook/1. Python Imaging Library 中文手册...

neural network image processing tool 使用-概述说明以及解释

2024-10-01 16:08:43

neural network image processing tool 使用-概述说明以及解释1.引言正则化工具箱1.1 概述概述神经网络图像处理工具(Neural Network Image Processing Tool)是一种基于神经网络技术的图像处理工具,它能够通过学习和训练,对图像进行分析、处理和识别。随着人工智能和深度学习的快速发展,神经网络图像处理工具已成为图像处理领域的热门技术之...

基于线性判别分析的图像分类和识别技术研究

2024-10-01 15:53:12

基于线性判别分析的图像分类和识别技术研究近年来,随着数字图像处理技术的日益成熟,图像分类和识别技术已经成为了计算机视觉领域中的一个重要问题。无论是安保领域的人脸识别、数字图书馆中的图像检索,还是智能家居中的人体识别等等,都离不开图像分类和识别技术的支持。因此,如何有效地实现图像分类和识别成为了计算机视觉领域中的一个热点问题之一。线性判别分析是一种经典的分类和降维算法,它的主要思想是通过最大化类之间...

最新文章