688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

网络

mean teacher 框架

2024-10-01 13:50:48

mean teacher 框架    "Mean teacher" 框架是一种半监督学习方法,旨在利用带有标签的数据和未标记的数据来提高模型的性能。这个框架最初是由大神 Geoffrey Hinton 提出的。在这个框架中,有两个神经网络,一个是学生网络,另一个是老师网络。老师网络的参数被固定,它的输出被用来“软化”带有标签的数据,然后用这个“软化”的输出来训练学生网络。这种方...

马尔可夫链的正则性和遍历性

2024-10-01 13:43:09

马尔可夫链的正则性和遍历性 马尔可夫链的正则性和遍历性马尔可夫链是一种随机进程,它描述了随机变量的统计转移模型,它可以提供一种有效的方法来评估时间序列的潜在模式。它的行为类似于一系列随机moves,它通过简单的但紧密的过程,预测相关变量之间的行为。因此,马尔可夫链,被称为马尔可夫链,不仅是一种随机过程,也可以被用来描述关于下一个事件或状态的统计关系。首先,马尔可夫链具有正则定律。正则性,正如其名,...

基于图结构的图像注意力网络

2024-10-01 12:39:58

基于图结构的图像注意力网络Graph attention network based on graphic structure曾金芳,封琳琅,李婕妤,闫李丹 (湘潭大学物理与光电工程学院,湖南湘潭 411105)摘 要:虽然现已有许多关于图像注意力机制的研究,但是现有的方法往往忽视了特征图的全局空间结构和空间注意力与通道注意力的联系。所以本文提出了一种基于整个空间拓扑结构的注意机制,将特征图映射成...

基于深度残差网络的DeepFM点击率预测模型

2024-10-01 12:35:58

基于深度残差网络的DeepFM点击率预测模型    【摘要】    本文介绍了基于深度残差网络的DeepFM点击率预测模型。在介绍了研究背景和研究意义。在首先概述了深度残差网络的基本原理,然后详细介绍了DeepFM模型的原理。接着讨论了基于深度残差网络的改进方法,并对实验结果进行了分析。最后比较了模型性能差异。在总结了研究成果,并展望了进一步的研究方向和研究...

叠前随机噪声深度残差网络压制方法

2024-10-01 12:16:36

 2020年6月第55卷 第3期 *甘肃省兰州市城关区雁儿湾路535号中国石油勘探开发研究院西北分院,730020。Email:gulanglhs@petrochina.com.cn本文于2019年5月31日收到,最终修改稿于2020年2月17日收到。本项研究受中国石油天然气集团公司科技项目“深层及非常规物探新方法新技术”(2019A-3312)和中国石油天然气股份有限公司科技项目“智能化地震噪音...

基于改进DeepSort的行人跟踪方法研究

2024-10-01 12:15:55

doi:10.3969/j.issn.1003-3114.2023.06.018引用格式:王瑞,林志坚,陈平平.基于改进DeepSort 的行人跟踪方法研究[J].无线电通信技术,2023,49(6):1117-1124.[WANG Rui,LIN Zhijian,CHEN Pingping.Research on Pedestrain Tracking Method Based on Impro...

深度学习网络结构的优化策略

2024-10-01 12:05:25

深度学习网络结构的优化策略深度学习网络结构的优化策略是指在构建和设计深度学习模型时,如何选择和调整网络结构的方法与策略。在深度学习领域,网络结构是决定模型性能和表现的关键因素之一。本文将介绍一些常见的深度学习网络结构的优化策略。一、卷积神经网络(CNN)的优化策略卷积神经网络是一种特别适用于图像识别和计算机视觉任务的深度学习网络结构。在优化卷积神经网络时,可以采取以下策略:1. 深度与宽度的平衡:...

基于YOLO_v2_的辣椒叶部蚜虫图像识别

2024-10-01 09:50:22

山东农业大学学报(自然科学版),2023,54(5):700-709VOL.54NO.52023 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2023.05.009基于YOLO v2的辣椒叶部蚜虫图像识别邹玮1,岳延滨1*,冯恩英1,彭顺正1,张爱民...

MATLAB中的卷积神经网络与图像识别

2024-10-01 09:46:35

MATLAB中的卷积神经网络与图像识别近年来,深度学习在图像识别领域取得了巨大的突破,而卷积神经网络(Convolutional Neural Networks)是其中最为重要的一种算法。而在MATLAB这一强大的科学计算软件中,通过神经网络工具箱可以轻松实现卷积神经网络,并且进行图像识别。本文将深入探讨在MATLAB中应用卷积神经网络进行图像识别的原理和方法。1. 卷积神经网络简介卷积神经网络是...

在MATLAB中使用卷积神经网络进行显著性检测

2024-10-01 09:43:00

在MATLAB中使用卷积神经网络进行显著性检测引言显著性检测是计算机视觉领域的一个重要研究方向,其目标是在一张图像中确定视觉注意力区域。这一技术在图像处理、目标跟踪、图像编辑等方面具有广泛的应用。而卷积神经网络(Convolutional Neural Network,CNN)作为目前图像处理领域最为热门的算法之一,已经在显著性检测中取得了许多重要的突破。本文将介绍如何在MATLAB中利用CNN实...

基于matlab的病虫害检测识别研究毕设代码

2024-10-01 09:22:46

基于matlab的病虫害检测识别研究毕设代码    由于涉及病虫害检测识别的算法目前比较多,下面以基于图像处理和深度学习算法的病虫害检测识别为例介绍。    一、图像处理方法    1. 图像预处理    在进行病虫害检测识别任务前,需要对图像进行预处理,以提取出对于检测的目标特征。常用的图像预处理方法有以下几种:&n...

半监督学习中的半监督生成对抗网络的实际应用案例(七)

2024-10-01 04:19:40

半监督学习中的半监督生成对抗网络的实际应用案例在机器学习领域,半监督学习是一种训练模型的方法,其中只有部分数据被标记,而大部分数据是未标记的。半监督生成对抗网络(GAN)是半监督学习的一种方法,通过生成对抗网络的方式来利用未标记数据。本文将探讨半监督生成对抗网络的实际应用案例,并分析其在图像识别、语音识别和自然语言处理等领域的应用。半监督生成对抗网络是一种由生成器和判别器组成的模型。生成器试图生成...

半监督学习中的深度置信网络的使用技巧(七)

2024-10-01 04:18:04

深度置信网络(Deep Belief Networks, DBN)是一种用于半监督学习的重要技术。它结合了深度学习和概率图模型的优势,能够有效利用未标记数据进行模型训练,提高了模型的泛化能力。本文将介绍在半监督学习中使用深度置信网络的一些技巧和注意事项。正则化半监督方法首先,深度置信网络是一种多层神经网络,由多个受限玻尔兹曼机组成。在训练过程中,首先使用无监督学习的方法对网络的参数进行初始化,然后...

半监督学习中的深度置信网络的使用技巧(九)

2024-10-01 04:12:15

半监督学习中的深度置信网络的使用技巧深度置信网络(DBN)是一种用于特征提取和分类的深度学习模型,在半监督学习中有着很高的应用价值。本文将通过介绍DBN的基本原理和使用技巧,探讨在半监督学习中如何更好地利用深度置信网络。DBN的基本原理深度置信网络是一种由多个受限玻尔兹曼机(RBM)组成的堆叠网络。RBM是一种基于概率的生成式模型,可以学习数据的分布特征并进行特征提取。DBN通过逐层训练RBM,然...

深度置信网络半监督学习理论研究方法对比分析

2024-10-01 03:57:47

深度置信网络半监督学习理论研究方法对比分析深度置信网络(Deep Belief Network, DBN)是一种基于概率模型的无监督学习算法,近年来在机器学习领域取得了显著的研究进展和应用成果。半监督学习是指在训练数据中,只有一小部分样本带有标签信息,而大部分样本没有标签信息。本文将比较和分析深度置信网络半监督学习理论研究方法,探讨其优缺点以及应用前景。深度置信网络通过堆叠多层单元构建网络结构,每...

如何利用生成式对抗网络进行半监督学习的实践方法分享(Ⅲ)

2024-10-01 03:51:13

生成式对抗网络(GAN)是一种由两个神经网络组成的模型,一个是生成器,另一个是判别器。通过生成器不断生成假样本,然后判别器不断学习区分真伪样本,两者相互对抗,最终达到生成逼真样本的目的。在这个过程中,如何利用生成式对抗网络进行半监督学习,一直是学术界和工业界关注的热点和难点问题。本文将从实践方法出发,分享一些利用生成式对抗网络进行半监督学习的实践经验。正则化半监督方法首先,我们需要明确半监督学习的...

使用半监督学习算法进行网络异常检测的步骤

2024-10-01 03:50:47

使用半监督学习算法进行网络异常检测的步骤网络异常检测是一种重要的技术,用于监测和识别网络通信中的异常行为。该技术能够帮助网络管理员及时发现网络中的异常行为,从而加强网络安全防护。半监督学习算法是一种有效的方法,它能够在数据量较少的情况下进行网络异常检测。本文将介绍使用半监督学习算法进行网络异常检测的步骤。1. 数据收集和预处理首先,我们需要收集用于网络异常检测的数据。这些数据可以是来自网络服务器、...

异构网络中的半监督学习方法研究

2024-10-01 03:49:09

异构网络中的半监督学习方法研究引言    随着互联网的迅速发展以及各种网络应用的普及,人们在网络中生成的数据量急剧增大。这些数据以异构网络的形式存在,包括社交网络、知识图谱、交通网络等。异构网络是由多种类型的节点和边组成的网络,不同类型的节点表示不同的实体,而边则表示不同类型实体之间的关系。在异构网络中,学习节点之间的关系对于许多任务具有重要意义,如节点分类、链接预测等。但是,...

异构信息网络上基于图正则化的半监督学习

2024-10-01 03:44:30

异构信息网络上基于图正则化的半监督学习刘钰峰;李仁发【摘 要】Heterogeneous information networks ,composed of multiple types of objects and links ,are ubiquitous in real life .Therefore ,effective analysis of large‐scale heterogene...

一种基于三重网络与标注一致性正则化的半监督学习方法

2024-10-01 03:38:27

(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 正则化半监督方法CN 113657455 A(43)申请公布日 2021.11.16(21)申请号 CN202110837568.9(22)申请日 2021.07.23(71)申请人 西北工业大学    地址 710072 陕西省西安市碑林区友谊西路127号(72)发明人 蒋雯 苗旺 耿杰 (74)专...

lstm的贝叶斯自动调参python代码

2024-10-01 02:10:48

1. LSTM简介长短期记忆网络(Long Short-Term Memory,LSTM)是一种特殊的循环神经网络(Recurrent Neural Network,RNN)。它能够学习长期依赖关系,并且在处理时序数据时表现出。LSTM网络的结构相对复杂,通常需要进行一定的调参才能使其发挥最佳性能。2. 贝叶斯优化贝叶斯优化是一种基于贝叶斯定理的全局优化方法,它能够在有限次采样的情况下到全局最...

一种基于分阶段交叉训练的唇语识别方法及系统

2024-10-01 01:59:34

(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 114419731 A(43)申请公布日 2022.04.29(21)申请号 CN202210025779.7(22)申请日 2022.01.11(71)申请人 西安邮电大学    地址 710121 陕西省西安市长安街618号(72)发明人 路龙宾 许学斌 刘一彪 范海潮 (74)专利代理机构...

多层感知器神经网络的训练算法优化与收敛性分析

2024-10-01 01:56:39

多层感知器神经网络的训练算法优化与收敛性分析深度学习在人工智能领域中扮演着重要角,而多层感知器神经网络作为经典的深度学习模型,被广泛应用于图像识别、自然语言处理等领域。然而,多层感知器神经网络的训练过程通常需要大量的计算资源和时间,在实际应用中存在一定挑战。为了提高多层感知器神经网络的训练效果和速度,需要对训练算法进行优化,并对其收敛性进行深入分析。正则化参数的自适应估计首先,为了优化多层感知器...

深度迁移学习深度学习

2024-10-01 01:32:57

深度迁移学习一、深度学习1)ImageNet Classification with Deep Convolutional Neural Networks主要思想:该神经网络有6000万个参数和650,000个神经元,由五个卷积层,以及某些卷积层后跟着的max-pooling层,和三个全连接层,还有排在最后的1000-way的softmax层组成。使用了非饱和的神经元和一个非常高效的GPU关于卷积...

dropout方法的作用

2024-10-01 00:56:16

正则化包括dropoutdropout方法的作用Dropout方法的作用随着深度学习技术的快速发展,神经网络在各个领域都取得了显著的成果。然而,深度神经网络在处理大规模数据集和复杂任务时常常面临着过拟合的问题。过拟合指的是模型在训练集上表现出,但在测试集上表现较差的现象。为了解决这个问题,研究人员提出了一种名为Dropout的方法。Dropout是一种正则化技术,通过在训练过程中随机地将神经元的...

dropout的概念

2024-10-01 00:46:05

dropout的概念Dropout 是指在深度学习中一种常用的技术,用于防止过拟合。它的基本思想是在训练过程中随机地将一些神经元的输出设置为 0,从而减少神经元之间的依赖性,迫使网络学习更加鲁棒的特征。具体来说,Dropout 技术在每个训练批次中,以一定的概率(通常为 0.5 或 0.2)随机地将一些神经元的输出设置为 0。这样,在每次训练时,网络都会接收到不同的输入,从而减少了神经元之间的依赖...

lstm loss曲线 调参

2024-10-01 00:42:36

一、概述最近,深度学习领域中的长短期记忆网络(LSTM)在各种自然语言处理和时间序列预测任务上取得了非常好的效果。然而,要让LSTM网络取得最佳性能,需要仔细进行调参,其中包括对损失函数(loss)曲线的分析和调整。本文将对LSTM网络的损失曲线进行详细讨论,并探讨如何进行有效的调参来优化LSTM网络性能。二、LSTM网络简介LSTM是一种特殊的循环神经网络(RNN),它可以有效地处理时间序列数据...

利用图论解决优化问题

2024-10-01 00:11:44

利用图论解决优化问题图论是一种数学领域,研究的对象是图。图是由节点和边构成的一种数学结构,可以用来描述不同事物之间的关系。在实际应用中,图论被广泛应用于解决各种优化问题。一、最短路径问题最短路径问题是图论中的经典问题之一。通过图论的方法,可以很容易地到两个节点之间最短路径的长度。这在现实生活中经常用于规划交通路线、通讯网络等方面。二、最小生成树问题最小生成树问题是指在一个连通加权图中到一个权值...

高考数学应试技巧之图论与网络优化

2024-10-01 00:10:32

高考数学应试技巧之图论与网络优化高考数学是中学生进入大学的重要关卡,其中数学是一个必考科目,而数学中的图论和网络优化是一个比较重要的分支。图论和网络优化是数学中的一个难点,但是如果我们能够合理利用图论和网络优化的知识,就可以在高考数学中占有绝对优势。本文将为大家详细介绍高考数学应试技巧之图论和网络优化。1. 图论图论是研究图及其性质和应用的一门学科。图由点和边组成,每个点代表一个物体,每个边代表一...

euler ancestral sampling 解析 -回复

2024-10-01 00:06:03

euler ancestral sampling 解析 -回复"Euler Ancestral Sampling解析"Euler Ancestral Sampling(EAS)是一种用于从图模型中进行概率推断的方法。它是以瑞士数学家欧拉的名字命名的,以纪念他在图论和概率论领域的杰出贡献。EAS是一种基于贝叶斯网络的近似推断技术,能够在给定观察数据的情况下,对未观察的变量进行推断。本文将对Euler...

最新文章