网络
融合运动信息的图像运动模糊去除算法
收稿日期:2019 10 18;修回日期:2019 12 12 基金项目:国家重点研发计划项目(2016YFC0200400);国家自然科学基金资助项目(61673265) 作者简介:董星煜(1993 ),男,山西朔州人,硕士研究生,主要研究方向为图像处理、深度学习;刘传奇(1993 ),男,山东聊城人,博士研究生,主要研究方向为图像处理、深度学习;赵健康(1...
2022~2023初级软考考试题库及答案第309期
2022~2023初级软考考试题库及答案1. 冒充信件回复.假装纯文字ICON.冒充微软雅虎发信.下载电子贺卡同意书.是使用的叫做字典攻击法的方法。正确答案:错误2. 自( ) 开始,国家计委、科委将 EDI 列入“八五”国家科技攻关项目。A.1990 年B.1989 年C.1991 年D.1992 年正确答案:A3. 事务的( )是指事务一旦提交,即使之后又发生故障,对其执行的结果也不会有任何影...
22春“计算机科学与技术”专业《人工智能》离线作业-满分答案1
22春“计算机科学与技术”专业《人工智能》离线作业-满分答案1. 不能分解成更简单的陈述语句,称为复合命题。( )A.正确B.错误参考答案:B2. 某单位派遣出国人员,有赵、钱、孙三位候选人,三人中至少派遣一人。设用P(x)表示派x出国,zhao、qian、sun分别表示三人,将该条件用谓词公式表示出来:( )A.P(zhao)∨P(qian)∨P(sun)B.P(zhao...
卷积神经网络的参数剪枝和稀疏化方法(Ⅱ)
在深度学习领域,卷积神经网络(CNN)是一种被广泛应用于图像识别、语音识别和自然语言处理等领域的模型。然而,CNN的模型参数通常非常庞大,导致模型运行速度慢、占用内存大,并且难以部署到资源受限的设备上。因此,研究者们开始探索如何对CNN的参数进行剪枝和稀疏化,以减小模型大小并提高运行效率。参数剪枝是一种常见的模型压缩方法,它通过删除网络中的部分连接或节点来减小模型的大小。剪枝可以分为结构化剪枝和非...
基于深度学习的网络入侵检测系统设计
基于深度学习的网络入侵检测系统设计网络安全是当今互联网时代的一个重要问题,随着网络攻击手段的不断进化,传统的入侵检测系统已经无法满足对复杂攻击的及时发现和防御需求。而基于深度学习的网络入侵检测系统设计可以通过模拟人类神经网络的工作原理,实现对网络流量的实时分析和异常检测,提高网络安全的防御能力。神经网络中正则化是为了干什么首先,基于深度学习的网络入侵检测系统设计需要构建一个有效的训练数据集。训练数...
神经网络中的层数选择与探讨
神经网络中的层数选择与探讨神经网络作为一种模拟人脑神经元工作的计算模型,在近年来取得了巨大的成功。然而,神经网络中的层数选择一直是一个备受争议的话题。在本文中,我们将探讨神经网络中层数的选择问题,并讨论不同层数对网络性能的影响。1. 神经网络的层数与表示能力神经网络的层数决定了网络的深度,也决定了网络能够学习和表示的复杂度。较浅的神经网络通常具有较弱的表示能力,而较深的神经网络则可以学习更复杂的函...
随机神经网络发展现状综述
随机神经网络发展现状综述一、本文概述随着和机器学习技术的迅猛发展,神经网络已成为一种强大的工具,广泛应用于各种领域,如计算机视觉、语音识别、自然语言处理、游戏等。其中,随机神经网络作为一种新兴的神经网络架构,近年来引起了广泛的关注和研究。本文旨在综述随机神经网络的发展现状,包括其基本原理、应用领域、挑战与前景等,以期为读者提供一个全面而深入的了解。随机神经网络,顾名思义,是一种在神经网络中引入随机...
神经网络中的自适应权重与模型稀疏性方法分析
神经网络中的自适应权重与模型稀疏性方法分析在神经网络的发展过程中,自适应权重和模型稀疏性方法是两个重要的研究方向。自适应权重可以使网络更好地适应不同的输入数据,而模型稀疏性方法可以提高网络的泛化能力和计算效率。本文将对这两个方法进行分析和探讨。一、自适应权重方法自适应权重方法是一种通过调整神经网络中的权重参数来提高网络性能的技术。这种方法的核心思想是根据输入数据的特征和网络的输出来自动调整权重的大...
LSTM神经网络在时间序列预测中的优化与改进
LSTM神经网络在时间序列预测中的优化与改进时间序列预测是一项重要的任务,它在许多领域中都具有广泛的应用,如金融预测、天气预测、股票市场分析等。LSTM(Long Short-Term Memory)神经网络是一种特殊的循环神经网络(RNN),它在处理时间序列数据时具有优秀的性能。然而,LSTM网络也存在一些问题和局限性。本文将探讨LSTM神经网络在时间序列预测中的优化与改进方法,以提高其性能和应...
基于L_M贝叶斯正则化方法的BP神经网络在潜艇声纳部位自噪声预报中的应用...
-----------------------------------Docin Choose -----------------------------------豆 丁 推 荐↓精 品 文 档The Best Literature----------------------------------The Best Literature文章编号:1007-7294(2007)01-0136-07...
什么是神经网络
神经网络是什么?神经网络是一种计算模型,由大量的节点(或神经元)直接相互关联而构成;每个节点(除输入节点外)代表一种特定的输出函数(或者认为是运算),称为激励函数;每两个节点的连接都代表该信号在传输中所占的比重(即认为该节点的“记忆值”被传递下去的比重),称为权重;网络的输出由于激励函数和权重的不同而不同,是对于某种函数的逼近或是对映射关系的近似描述;神经网络中正则化是为了干什么说明:在部分网络中...
简述cnn网络的原理及应用
简述CNN网络的原理及应用简介卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习算法,用于处理具有类似网格结构的数据,比如图像或视频数据。CNN以其在图像识别、计算机视觉和自然语言处理等领域中的卓越表现而受到广泛关注。本文将简要介绍CNN网络的原理,并讨论其在实际应用中的常见用途。CNN网络原理CNN网络的核心原理是通过卷积层和池化层来提取和学习图像的...
深度神经网络原理
深度神经网络原理深度神经网络(Deep Neural Network,DNN)是一种机器学习模型,它模仿人脑神经网络的结构和工作原理。该网络由多个神经元层组成,每个神经元层与其他层之间有连接。每个神经元层接收上一层的输出作为输入,并通过一系列非线性变换和权重调节来计算输出。隐藏层是DNN的核心部分,它们有助于网络学习到更复杂的特征表示。输出层通常用于分类或回归任务。DNN通过反向传播算法进行训练,...
神经网络的基本原理
神经网络中正则化是为了干什么神经网络的基本原理神经网络是将大量复杂的数据转化为参数,进一步输入到网络中进行传播,通过反复训练以及调整参数,以求学习到合理的模式,从而实现智能化任务的一种人工智能技术。 基本的神经网络模型,包括输入层、输出层、隐层,输入层用于将输入的复杂数据转换为网络参数,输入层的参数传递到隐层,通过隐层整合输入,对数据进行学习处理,隐层进行多层次处理以及学习,最终产出结果推到输出层...
什么是神经网络及其基本原理
什么是神经网络及其基本原理神经网络是一种模拟人类大脑工作方式的计算模型,它的应用范围涵盖了各个领域,从图像识别到自然语言处理,从金融预测到医学诊断。神经网络的基本原理是通过模拟神经元之间的连接和信息传递,来实现复杂的计算任务。神经网络的基本组成单位是神经元。神经元接收来自其他神经元的输入信号,并通过一个激活函数将这些信号进行加权求和,然后产生一个输出信号。这个输出信号可以作为其他神经元的输入信号,...
深度学习解析神经网络的工作原理
深度学习解析神经网络的工作原理随着人工智能技术的迅猛发展,深度学习作为其中的核心技术之一,已经在各个领域展现出了巨大的潜力和应用价值。而神经网络作为深度学习算法的核心组成部分,其工作原理的解析对于我们理解深度学习的整体框架和应用具有重要的意义。首先,深度学习是一种模仿人脑神经系统进行信息处理的机器学习方法,而神经网络是其中的具体实现方式之一。神经网络的核心思想来源于对人脑神经元之间的相互连接和信息...
神经网络归一化的作用
神经网络归一化的作用机器学习领域有个很重要的假设:独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。而ICS现象的存在,导致输入的分布是动态变化的,不符合独立同分布的假设,因此网络模型很难稳定的去学习。深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常...
神经网络中的反向传播算法详解
神经网络中的反向传播算法详解神经网络是一种模拟人脑神经元网络结构的计算模型,它通过学习和调整权重来实现对输入数据的分类和预测。而神经网络中的反向传播算法则是实现这一目标的重要工具。本文将详细解析神经网络中的反向传播算法,包括其原理、步骤和应用。一、反向传播算法的原理神经网络中的反向传播算法基于梯度下降法,通过计算损失函数对网络中各个权重的偏导数来更新权重。其核心思想是将输出误差从网络的输出层向输入...
重要性采样在深度神经网络中的应用与优化
重要性采样在深度神经网络中的应用与优化深度神经网络是一种强大的机器学习模型,已被广泛应用于图像识别、自然语言处理和语音识别等领域。然而,训练深度神经网络所需的样本数量巨大,而且需要大量的计算资源。在这样的情况下,为了更高效地训练深度神经网络,重要性采样成为一种重要的技术,它可以帮助我们更有效地利用有限的训练样本。重要性采样是一种统计学中的方法,用于近似计算在一个分布下的期望值。在深度神经网络中的应...
机器学习中的神经网络原理详解
机器学习中的神经网络原理详解机器学习是当今最为热门的领域之一,而神经网络作为其中最为重要的部分之一,更是备受关注。那么,什么是神经网络,它是如何运作的呢?本文就来详细介绍机器学习中的神经网络原理。一、神经网络概述神经网络,简单来说,就是使用电子或化学信号传递模拟大脑神经元的信息处理方式的一组算法模型。神经网络的结构类似于神经元网络,它通过神经元之间的连接,模拟人类大脑中的学习、记忆和决策等过程。神...
在神经网络中使用批归一化的优势与技巧
神经网络中正则化是为了干什么在神经网络中使用批归一化的优势与技巧神经网络是一种模仿人类神经系统的计算模型,它通过学习数据的特征和模式来实现各种任务,如图像识别、语音识别和自然语言处理等。然而,在神经网络的训练过程中,我们经常遇到一些问题,如梯度消失和梯度爆炸等,这些问题会导致网络的收敛速度变慢,甚至无法收敛。为了解决这些问题,研究人员提出了批归一化(Batch Normalization)的方法。...
优化神经网络训练过程中的学习率
优化神经网络训练过程中的学习率神经网络中正则化是为了干什么神经网络是一种模拟人脑神经系统的计算模型,它通过学习和训练来实现各种任务。在神经网络的训练过程中,学习率是一个非常重要的超参数,它决定了网络参数在每次迭代中的更新速度。优化神经网络训练过程中的学习率是提高网络性能的关键之一。学习率的选择对神经网络的训练效果有着直接的影响。如果学习率过大,网络参数的更新可能会过于剧烈,导致训练过程不稳定甚至发...
batchnormalization方法
batchnormalization方法Batch Normalization(批量归一化)是一种常用的神经网络中的优化方法,用于提高神经网络的训练速度和准确性。它于2024年由Ioffe和Szegedy在论文"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"中...
卷积神经网络的批量归一化技术介绍(七)
卷积神经网络的批量归一化技术介绍卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像识别、语音识别和自然语言处理等领域。在CNN的训练过程中,批量归一化技术被广泛应用,它能够加快网络的收敛速度,提高模型的训练稳定性和泛化能力。一、 批量归一化的概念批量归一化(Batch Normalization,简称BN)是由Sergey Ioffe和Christian Szegedy在2015年提出的一种...
南开大学2022年9月《大数据开发技术》作业考核试题及答案参考4
南开大学 2022 年 9 月《大数据开辟技术》作业考核试题及答案参考1. 如果 numPartitions 是分区个数,那末 Spark 每一个 RDD 的分区 ID 范围是( )A.[0,numPartitions]B.[0,numPartitions-1]C.[1,numPartitions-1]D.[1,numPartitions]参考答案: B2. MapReduce 设计的...
复杂网络中的社区发现算法研究
复杂网络中的社区发现算法研究随着互联网技术的飞速发展,越来越多的数据得以存储,处理和分析。网络作为一个系统,一直受到研究者们的关注。随着大量个体之间的相互作用,网络中会出现许多社区结构。而社区发现算法则是揭示网络中社区结构的方法。本文将会从复杂网络、社区结构、社区发现算法三方面来进行阐述。一、复杂网络复杂网络是一种由很多个体组成的网络结构。它的结点和边是复杂的,包含数学、物理、生物、社会等多方面的...
精神科门诊患者抑郁和焦虑症状的关系基于网络分析的方法
国际精神病学杂志JOURNAL OF INTERNATIONAL PSYCHIATRY 2021年第48卷第1期精神科门诊患者抑郁和焦虑症状的关系:基于网络分析的方法马竹静1任垒1金银川1郭力2张钦涛1苑会羚1杨,【摘要】目的本研究以精神科门诊患者为研究对象,探索其抑郁和焦虑症状网络方法使用某综合医院心身科门诊23735位患者(抑郁分量表总分& 26分且焦虑分量表总分& 20分)...
resnet 特征提取
resnet 特征提取引言ResNet(残差神经网络)是一种非常流行的卷积神经网络架构,首次在2015年被提出。它在深层神经网络中解决了梯度消失和梯度爆炸的问题,使得训练非常深的神经网络成为可能。ResNet的特征提取能力在计算机视觉任务中得到了广泛应用,本文将详细介绍resnet特征提取的原理及其在实际应用中的优势和限制。ResNet的基本原理ResNet通过引入“残差块”(residual b...
基于多尺度近端特征拼接网络的高光谱图像分类方法
2021年2月Journal on Communications February 2021 第42卷第2期通信学报V ol.42No.2基于多尺度近端特征拼接网络的高光谱图像分类方法高红民,曹雪莹,陈忠昊,花再军,李臣明,陈月(河海大学计算机与信息学院,江苏南京 211100)摘 要:针对基于传统卷积神经网络模型的高光谱图像分类算法细节表现力不强及网络结构过于复杂的问题,设计了一种基...
人工智能开发中的模型压缩技术介绍
人工智能开发中的模型压缩技术介绍随着人工智能技术的快速发展,机器学习模型在各个领域中扮演着越来越重要的角。然而,大型深度学习模型的训练和部署往往需要大量的计算资源和存储空间。为了解决这一问题,研究者们提出了模型压缩技术,通过减小模型的规模和参数量,从而提高模型的运行效率。本文将介绍人工智能开发中的模型压缩技术。模型压缩技术主要包括参数剪枝、参数量化和神经网络结构优化三个方面。参数剪枝是指通过剪去...