信号
基于单快拍信号到达角估计算法的室内入侵检测
2021⁃04⁃10计算机应用,Journal of Computer Applications2021,41(4):1153-1159ISSN 1001⁃9081CODEN JYIIDU http ://www.joca基于单快拍信号到达角估计算法的室内入侵检测任晓奎,刘鹏飞*,陶志勇,刘影,白立春(辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105)(∗通信作者55062...
lora正则化原理
lora正则化原理LORA正则化原理什么是LORA正则化原理?LORA(Long Range)是一种低功耗宽区域网络技术,它的正则化原理是一种用于数据传输的调制解调技术。LORA正则化原理基于扩频技术,通过在信号中加入众多相干的子信号,以提高数据的可靠性和传输距离。LORA正则化原理的基本原理•数据扩频:LORA将原始数据信号通过众多的码片序列进行扩频。每一个码片序列都是由基带信号与伪随机码片序列...
Exd-GCCA的SSVEP信号检测算法研究
• 53•脑机接口(BCI)系统旨在大脑和计算机之间建立直接连接,这可以帮助重度残疾人表达其意图或控制设备而无需肌肉运动,从而摒弃了人类最初的肌肉系统和外周神经。常见的脑机接口系统主要有基于运动想象(MI)、基于P300以及基于稳态视觉诱发(SSVEP)。由于SSVEP信号具有较好的信噪比,并且经过较少的训练就能很好的进行诱发,同时还能简单的从大脑表皮采集到,因此已经成为了BCI技术领域的研究的热...
基于RLS算法的多麦克风降噪MATLAB实现
基于RLS算法的多麦克风降噪MATLAB实现基于RLS(Recursive Least Squares)算法的多麦克风降噪是一种常用的信号处理技术,可以有效地降低噪声对音频信号的干扰。本文将介绍如何使用MATLAB实现基于RLS算法的多麦克风降噪。多麦克风降噪系统由多个麦克风组成,其中一个麦克风用于采集纯净声音信号,称为参考麦克风,其余麦克风用于采集带噪声的混合声音信号。降噪过程的目标是通过参考麦...
基于Matlab的信号平稳性检验系统
基于Matlab的信号平稳性检验系统作者:眭 烨 李 明来源:《现代电子技术》2010年第03期 摘 要:信号的平稳性检验在信号处理中起着十分重要的作用。介绍Matlab环境下设计和实现信号平稳性检验系统。该系统主要利用替代数据的平稳性特点,通过在时频域中分别计算原数据和对应替代数据的平稳度并相互比较,以实现对信号平稳性的检验。它可以求出输入数...
MATLAB中的异常检测与信号质量评估
MATLAB中的异常检测与信号质量评估引言在工程和科学领域中,信号处理是一项重要的任务。随着技术的不断发展,数据采集和处理变得越来越重要。然而,由于各种原因,信号中的异常值和噪音可能会干扰我们对数据的准确分析。因此,异常检测和信号质量评估成为了一个不可或缺的工具。在本文中,我们将探讨MATLAB中的异常检测和信号质量评估的方法和技术。正则化损伤识别matlab一、异常检测在信号处理中,异常值指的是...
基于BP神经网络的数控机床刀具磨损状态识别方法
基于BP神经网络的数控机床刀具磨损状态识别方法何一千,黄民,孙巍伟(北京信息科技大学机电工程学院,北京100192)摘要:为了提高三相电流信号监测刀具磨损状态的可靠性,提出了一种基于BP神经网络的数控机床刀具磨损状态识别方法。首先对采集得到的三相电流信号进行时域、频域和小波分析,从中提取出与刀具磨损程度相关性较好的多个特征量,组合成敏感特征向量,然后搭建BP神经网络,建立三相电流信号特征向量与刀具...
matlab小波去噪详解超全超全有程序
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 ...
MATLAB小波分析工具箱常用函数
MATLAB小波分析工具箱常用函数1. wfilters 函数:用于生成小波滤波器和尺度函数,可以根据指定的小波和尺度类型生成小波滤波器系数。2. wavedec 函数:用于将信号进行小波分解,将输入信号分解为多个尺度系数和小波系数。3. waverec 函数:用于将小波系数和尺度系数进行重构,将小波分解后的系数重构为信号。4. cwt 函数:用于进行连续小波变换,可以获得信号在不同尺度上的时频信...
MATLAB中的信号重构与恢复技术详解
MATLAB中的信号重构与恢复技术详解在数字信号处理领域,信号的重构与恢复是一个非常重要的问题。通过信号重构和恢复技术,我们可以从采样的离散数据中还原出原始信号,从而实现信号的精确重建和信息的完整恢复。MATLAB作为一款功能强大的工具,提供了丰富的信号处理函数和算法,使得信号重构与恢复在MATLAB中变得更加简单和高效。一、离散信号的采样与重构在数字信号处理中,我们通常将连续时间信号进行采样,得...
pmd相位测量偏折术matlab程序
题目:PMD相位测量偏折术Matlab程序一、概述 PMD(Polarization Mode Dispersion)是光纤通信系统中常见的一个问题,它导致信号失真、损耗增加,甚至影响系统的稳定性和性能。为了准确测量PMD的影响,并到相应的补偿方法,研究人员和工程师们一直在寻高效、精准的PMD相位测量偏折术。利用Matlab编程进行PMD相位测量偏折术的研究和实现,可以更好地帮助...
基线校正matlab
基线校正matlab 基线校正(Baseline correction)是信号处理领域中的一个重要步骤,通常用于纠正信号中的基线漂移(Baseline drift)或者背景杂散(Background noise)的干扰。近年来,基线校正已经成为了许多科学研究、工业应用以及医学诊断等领域中必不可少的一个环节。本文将从matlab软件角度介绍基线校正的一些方法和技巧。&nbs...
ssvep范式 matlab处理
文章主题:SSVEP范式在Matlab处理的深度和广度探讨一、引言视觉诱发电位(Visual Evoked Potentials, VEP)是一种反映在视觉刺激下,大脑皮层电活动的生理信号。稳态视觉诱发电位(Steady-State Visual Evoked Potentials, SSVEP)是VEP的一种特殊形式,指在稳定的视觉刺激下,大脑产生的频率和刺激频率相同的生物电位。SSVEP广泛应...
高阶累积量调制识别matlab
正则化损伤识别matlab高阶累积量调制识别matlab高阶累积量调制(High Order Cumulant Modulation),又称为直接自适应高阶累积量调制或直接自适应弯曲调制(Direct Adaptive Bend Modulation,DABM),是一种将高阶累积量用于调制识别的方法。该方法根据信号的高阶累积量特性来进行信号调制的判别,适用于非线性、非高斯的系统。在matlab的工...
Matlab技术信号重构方法
Matlab技术信号重构方法一、介绍信号重构是一种将原始信号进行逆向转换的技术,可以恢复信号的原貌或提取出信号中的某些特征。在信号处理和通信领域中,信号重构是非常有用的技术,可以应用于语音处理、图像处理、压缩编码等多个领域。Matlab作为一种强大的数值计算和数据可视化软件,提供了丰富的工具箱和函数,可以对信号进行高效的重构处理。本文将介绍几种常见的信号重构方法,并详细讨论它们在Matlab中的实...
vmd变分模态分解matlab参数设置
正则化损伤识别matlab标题:深入探讨VMD变分模态分解在Matlab中的参数设置在现代科学技术领域中,信号处理一直是一个重要的研究领域。信号处理可以帮助人们更好地理解和分析数据,从而应用到不同的领域中,如医学影像、通信系统、天气预报等。VMD(变分模态分解)作为一种新兴的信号处理方法,近年来越来越受到研究者和工程师的关注。在VMD的实际应用过程中,对参数的合理设置能够对分解效果产生显著影响,因...
基于CS的稀疏度变步长自适应压缩采样匹配追踪算法
第37卷第8期 计算机应用与软件Vol 37No.82020年8月 ComputerApplicationsandSoftwareAug.2020基于CS的稀疏度变步长自适应压缩采样匹配追踪算法雷丽婷1,2 李 刚1,2 蒋常升3 梁 壮1,21(兰州交通大学机电技术研究所 甘肃兰州730070)2(甘肃省物流及运输装备信息化工程技术研究中心 甘肃兰州730070)3(兰...
稀疏微波成像原理
稀疏微波成像原理稀疏微波成像是一种利用微波信号进行物体成像的技术,其原理主要包括两个方面:1. 微波信号传播原理:微波是一种电磁波,其在介质中会产生散射和反射。当微波信号穿过一个物体时,会因为物体的不同介电常数而发生反射和散射。通过探测反射和散射信号的强度和相位信息,可以确定物体在空间中的分布情况。2. 稀疏成像算法原理:稀疏成像算法基于压缩感知理论,利用物体的稀疏性进行重构。具体而言,该算法通过...
基于稀疏的omp算法-概述说明以及解释
基于稀疏的omp算法-概述说明以及解释1.引言1.1 概述在现代科技的快速发展和信息爆炸的时代,数据处理和分析变得越来越重要。稀疏表示是一种有效的数据处理方法,它可以通过少量的非零元素来准确表示数据。而基于稀疏的OMP算法(正交匹配追踪算法)是一种常用的稀疏表示方法,可以用于信号处理、图像处理、机器学习等领域。本文将介绍稀疏表示的概念,详细解释OMP算法的原理和应用,并探讨其在各个领域的优势和潜力...
稀疏编码与稀疏表示的关系与差异分析
稀疏编码与稀疏表示的关系与差异分析稀疏编码和稀疏表示是机器学习和信号处理领域中两个重要的概念。虽然它们都与稀疏性有关,但它们在定义和应用上存在一些差异。首先,稀疏编码是一种数据压缩技术,旨在通过到数据的稀疏表示来减少数据的维度。稀疏编码的基本思想是,给定一组数据样本,可以将每个样本表示为其他样本的线性组合。通过最小化表示中的非零系数数量,可以实现数据的压缩。稀疏编码的应用非常广泛,例如图像压缩、...
高维信号的稀疏感知与处理
高维信号的稀疏感知与处理高维信号的稀疏感知与处理随着科技的不断发展,我们所接收到的信号越来越复杂,信号的维度也越来越高。高维信号的处理成为了一个重要的研究领域。在高维信号的处理中,稀疏感知技术被广泛应用。稀疏感知技术是一种通过少量的观测来恢复信号的技术。在高维信号的处理中,信号通常是稀疏的,即信号中只有少量的非零元素。稀疏感知技术利用这个特点,通过少量的观测来恢复信号。这种技术在信号处理、图像处理...
matlab稀疏重构
matlab稀疏重构 MATLAB中的稀疏重构涉及使用稀疏表示技术对信号或图像进行重建。稀疏表示是一种信号处理方法,它利用信号在某个基向量下的稀疏性质来进行表示和重建。在MATLAB中,可以使用稀疏表示的工具包如OMP(Orthogonal Matching Pursuit)或BP(Basis Pursuit)来实现稀疏重构。 首先,需要将信号或...
稀疏表示与压缩感知
稀疏表示与压缩感知正则化与稀疏1. 稀疏表示 信号表达是数字信号与信息处理中的根本问题,而信号处理是指对信号进行滤波、变换、分析、加工、提取特征参数等的过程。在信号处理中,我们常常希望在特定的空间中研究数字信号,如时域(一维信号)、空间域(多维信号)、频域、自相关域和小波域等。运用空间变换思想等价的表达信号对于处理信号是一种有效的手段,常用的变换方法是将信号分解到一组正交基...
稀疏优化问题算法研究
稀疏优化问题算法研究作者:***来源:《当代人(下半月)》2018年第03期 摘要:稀疏优化问题发展至今,已经广泛应用于压缩感知、图像处理、复杂网络、指数追踪、变量选择等领域,并取得了令人瞩目的成就。稀疏优化问题的求解算法种类繁多,根据算法设计原理的不同,可将其大致分为三类:贪婪算法、凸松弛方法和阈值类算法。本文主要介绍稀疏优化问题算法研究进展...
双择检测极大极小化准则
双择检测:clcm=1;%噪声标准差n=1;%信号标准差c=0;%信号的均值x=-5:0.001:5;p0=(exp(-x.^2/(2*m^2)))/(sqrt(2*pi)*m);%H0的概率密度函数p1=(exp(-(x-c).^2/(2*(m^2+n^2))))/(sqrt(2*pi*(m^2+n^2)));%H1的概率密度函数A=(a/sqrt(m^2+n^2))*exp(-(x-c).^2...
自适应波束成形算法LMSRLSVSSLMS分解
正则化参数的自适应估计自适应波束成形算法LMSRLSVSSLMS分解自适应波束成形(Adaptive Beamforming)是一种用于抑制多径干扰和提高系统性能的技术。它通过调整阵列天线的相位和振幅权重,来实现对特定方向的信号增强和对其他方向的信号抑制。自适应波束成形算法主要有LMS(Least Mean Squares)算法、RLS(Recursive Least Squares)算法和VSS...
非线性调频模式分解及在机械设备故障诊断中的应用
第5期2021年5月机械设计与制造Machinery Design&Manufacture77非线性调频模式分解及在机械设备故障诊断中的应用林青云',魏连友1,叶杰凯1,易灿灿2(1.丽水市特种设备检测院,浙江丽水323000;2.武汉科技大学,湖北武汉430081)摘要:由于机械设备传动系统中的关键零部件如轴承的振动信号具有典型非平稳的特征,将非线调频模式分解算法引入到机械设备故障诊断中...
线性自适应滤波算法综述
线性自适应滤波算法综述线性自适应滤波算法的应用非常广泛。在通信领域,它可以用于信号去噪、信号增强和信号分离等方面。在图像处理领域,它可以用于去除图像中的噪声,并提高图像的质量。在语音处理领域,它可以用于去除语音信号中的杂音,从而提高语音的识别率。在线性自适应滤波算法中,最常用的方法是最小均方差(Least Mean Square, LMS)算法。LMS算法基于梯度下降的原理,通过不断地调整滤波器的...
一种渐进式正则化自适应匹配追踪方法
(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 103489207 A(43)申请公布日 2014.01.01(21)申请号 CN201310452181.7(22)申请日 2013.09.29(71)申请人 哈尔滨工程大学 地址 150001 黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室(72)发明人 卞红...
一种改进的正则化自适应匹配追踪算法
一种改进的正则化自适应匹配追踪算法王芳星;刘顺兰【摘 要】针对压缩感知中未知稀疏度信号的重构问题,提出了一种改进的正则化自适应匹配追踪算法。它通过自适应变步长迭代对信号稀疏度进行估计,并将其作为初始支撑集长度,然后在分阶段迭代中正则化筛选原子,最终实现信号的精确重构。仿真结果表明,该算法重构信号的性能和效率均优于子空间追踪算法、正交匹配追踪算法和稀疏度自适应匹配追踪算法。%This paper p...