样本
基于机器学习的越权漏洞检测方法
星于Ml器学习伺趣取漏洞艦测方法■文/国网电动汽车服务有限公司李帅华孙庆贺赵明宇摘要:为解决Web,App应用越权逻辑漏洞造成的信息泄露、财产损失等问题,可以采用基于Isolation Forest、XGBoostfExtreme Gradient Boosting)x余弦相似度相结合方法实现越权逻辑漏洞检测。本文针对漏洞应用响应内容相似度相同的问题,提出了一种新的解决方法。该方法通过获取A、B两...
四种TSVR型学习算法的性能比较
四种TSVR型学习算法的性能比较李艳蒙;范丽亚【摘 要】It is w ell know n that the computational complexity and sparsity of learning algorithms based on support vector regression machines (SVRs) are two main factors for analyzi...
机器学习技术中的生成对抗网络算法详解
机器学习技术中的生成对抗网络算法详解生成对抗网络(GAN)是一种在机器学习中使用的强大算法,其独特的架构可以用于生成新的数据样本。GAN最初由伊恩·古德费洛在2014年提出,它结合了两个互相竞争的神经网络——生成器网络和判别器网络。生成器网络的目标是学习生成类似于训练数据的新数据样本。它以一个随机噪声向量作为输入,并通过一系列的转换层将噪声逐渐转化为与训练数据相似的样本。生成器的输出是一个虚拟样本...
医学图像数据增强技术的研究现状与进展
近年来,人工智能(artificial intelligence,AI)结合大数据的分析方法在医学图像领域得到长足发展并拥有强劲发展势头,截至目前为止,基于深度学习的图像识别系统已经覆盖病灶检测、病理诊断、放疗规划以及术后预测等几乎全部临床阶段,逐渐成为医生诊断的重要辅助技术手段[1]。其中一些样本量充足且易得的疾病诊断系统如基于X线的肺部筛查[2]、乳腺钼靶筛查[3]和基于CT影像的肺结节检测模...
r语言正态分布检验
r语言正态分布检验正态分布检验是统计学中非常重要的一种检验方法,通过对数据进行正态分布检验可以判断样本数据是否符合正态分布假设。在R语言中,我们可以使用多种方法来进行正态分布检验,包括基于图形的方法和基于统计量的方法。1. 基于图形的正态分布检验在R语言中,我们可以使用qqnorm()和qqline()函数来绘制QQ图,通过观察QQ图中的点是否落在直线上来判断样本数据是否符合正态分布假设。如果大多...
训练数据加权重的技巧
训练数据加权重的技巧正则化统计训练数据加权重的技巧主要包括以下几种:1. 修改损失函数:某些情况下,损失函数会计算所有样本的平均损失,这种情况下可以修改损失函数,使其更加关注难以正确分类的样本。例如,可以给难分类的样本更高的权重,使模型更加关注这些样本。2. 使用过采样和欠采样:过采样是将少数类样本进行重复,增加其在训练集中的数量。欠采样则是从多数类样本中随机选择少量样本,减少其在训练集中的数量。...
一种基于正则化判别分析的迁移学习算法
一种基于正则化判别分析的迁移学习算法王莉莉;冯其帅;陈德运;杨海陆【摘 要】针对大多数基于实例的迁移学习方法容易产生分布参数估计困难和泛化效果差的问题,提出一种正则化判别迁移学习算法.依据判别分析和半监督学习理论,采用核方法和正则化方法,研究了基于正则化的高斯核半监督判别分析方法,以构造修正嵌入空间的方式进行样本迁移.一方面,在映射空间中筛选样本可克服估计分布参数的困难;另一方面,引入伪标记数据和...
线性判别分析(Linear Discriminant Analysis)
1. 问题 之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。 比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个...
数据分析知识:数据分析中的线性判别分析
数据分析知识:数据分析中的线性判别分析数据分析中,线性判别分析是一种常见的分类方法。它的主要目的是通过在不同类别间寻最大化变量方差的线性组合来提取有意义的特征,并对数据进行分类。线性判别分析在实际应用中非常有用,例如在医学诊断、金融风险评估和生物计量学等领域。一、简要介绍线性判别分析线性判别分析是一种有监督的数据挖掘技术,在分类问题中常用。整个过程包括两个主要的部分:特征提取和分类器。特征提取的...
判别分析与聚类分析
判别分析与聚类分析判别分析与聚类分析是数据分析领域中常用的两种分析方法。它们都在大量数据的基础上通过统计方法进行数据分类和归纳,从而帮助分析师或决策者提取有用信息并作出相应决策。一、判别分析:判别分析是一种有监督学习的方法,常用于分类问题。它通过寻最佳的分类边界,将不同类别的样本数据分开。判别分析可以帮助我们理解和解释不同变量之间的关系,并利用这些关系进行预测和决策。判别分析的基本原理是根据已知...
判别分析方法概述及应用条件
判别分析方法概述及应用条件判别分析方法是一种用于模式识别和分类问题的统计学方法。它通过对不同类别样本之间的差异进行量化,以达到对未知样本进行分类的目的。本文将对判别分析方法的概念和常用的应用条件进行概述。一、判别分析方法概述判别分析方法是一种有监督学习的方法,其核心思想是通过到最佳的分离超平面或者决策面,将不同类别的样本在特征空间中进行分割。判别分析方法主要有两种常用的形式:线性判别分析(LDA...
判别分析方法及其应用效果评估
判别分析方法及其应用效果评估判别分析方法是一种常用的统计分析方法,用于确定分类系统中哪些变量最能有效地区分不同的组别。它基于一组预测变量(或称为自变量)的输入值,以及一组已知类别(或称为因变量)的输出值,通过构建分类模型来判断新样本属于哪个组别。本文将介绍判别分析方法的基本原理、常见的判别分析方法及其应用效果评估。## 一、判别分析方法的基本原理判别分析方法基于贝叶斯决策理论,旨在通过最小化错判率...
Maxent模型Help文档中文版
Maxent模型由史蒂芬·菲利普斯、米罗·杜迪克和罗布·夏皮尔在普林斯顿大学美国艺术与技术与技术研究所实验室研究部和美国自然历史博物馆生物多样性与保护中心的支持下编写的物种地理分布最大熵建模项目。 感谢以下自由软件包的作者,我们在这里使用:ptolemy/plot, gui/layouts, gnu/getopt and com/mindprod/ledatastream.此页包含 MaxEnt...
vae损失函数推导
vae损失函数推导正则化的约束条件1. 什么是VAEVAE(Variational Autoencoder)是一种生成模型,通过无监督学习从数据中学习出隐藏的潜在变量空间。VAE由两部分组成:编码器(encoder)和解码器(decoder)。编码器将输入数据映射到潜在空间中的潜在变量,解码器则将潜在变量映射回原始数据空间。VAE的核心思想是通过最大化数据的边缘似然来进行训练,其中边缘似然是通过计...
可以克服GAN训练缺点的一些解决方案,有助于提高GAN性能
可以克服GAN训练缺点的一些解决方案,有助于提高GAN性能生成对抗网络GAN很强大,但也有很多造成正则化的缺点GAN难以使用的缺陷。本文介绍了可以克服GAN训练缺点的一些解决方案,有助于提高GAN性能。生成对抗网络 (GAN) 是一类功能强大的神经网络,具有广泛的应用前景。GAN 本质上是由两个神经网络组成的系统——生成器 (Generator) 和鉴别器 (Discriminator)...
gan的训练技巧
gan的训练技巧介绍生成对抗网络(Generative Adversarial Networks,简称GAN)是一种非常强大的生成模型,可以通过训练生成高质量的图像、视频、音频等内容。然而,GAN的训练并不容易,需要注意一些技巧和调优策略。本文将探讨如何有效地训练GAN,以及一些常见的训练技巧。1. 深入理解GAN的工作原理GAN由一个生成器(Generator)和一个判别器(Discrimina...
模型鲁棒性评估与优化
模型鲁棒性评估与优化第一章:引言 1.1 研究背景在机器学习和人工智能的发展过程中,模型的鲁棒性评估和优化一直是重要的研究方向。鲁棒性是指模型对于输入数据中的噪声和干扰具有较好的适应能力,能够在复杂环境中保持较好的性能。对于现实应用场景中的机器学习模型来说,鲁棒性是非常重要且必要的特征。 1.2 研究目的本文旨在探讨模型鲁棒性评估与优化方法,为提...
基于高光谱技术的现场车漆物证识别模型研究
第42 卷第 7 期2023 年7 月Vol.42 No.7817~824分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)基于高光谱技术的现场车漆物证识别模型研究张浩,高树辉*正则化损伤识别matlab(中国人民公安大学侦查学院,北京100038)摘要:该文基于光谱检测可无损成像、操作简单的优点,探索了高光谱成像技术结合深度残差收...
matlab中trainbr的用法
`trainbr` 是 MATLAB 中用于训练基于样本的回归模型的一个函数。该函数使用最小二乘方法,并考虑到样本之间的关系,以适应多个回归模型。该函数的语法如下:```matlabmodel = trainbr(X,Y,alpha,Tree|BARTree|SMO|KernelRidge|Lasso|ElasticNet)```其中:* `X` 是输入数据的矩阵,每行代表一个样本,每列代表一个特...
逻辑回归概率计算
逻辑回归是一种用于分类问题的机器学习算法。它基于线性回归模型,通过使用逻辑函数(例如sigmoid函数)将线性回归的输出映射到一个0到1之间的概率值,从而进行分类预测。在逻辑回归中,概率计算可以通过以下步骤实现:正则化逻辑回归模型定义逻辑函数:常见的逻辑函数是sigmoid函数,它的定义如下:sigmoid(z) = 1 / (1 + e^(-z))其中,z是线性回归模型的输出(即输入特征的线性组...
logisticregression各参数
logisticregression各参数Logistics Regression和Logistic RegressionCVlogistic RegressionCV使⽤交叉验证来计算正则化系数C1、penalty默认为L2(1)在调参时,如果是为了解决过拟合问题,⼀般⽤L2就可以了。但如果选择L2后发现还是过拟合,则需要⽤L1(2)如果模型特征特别多,希望减少⼀些特征,让模型系数稀疏化,也选择...
逻辑回归(LogisticRegression)详解,公式推导及代码实现
逻辑回归(LogisticRegression)详解,公式推导及代码实现逻辑回归(Logistic Regression)什么是逻辑回归: 逻辑回归(Logistic Regression)是⼀种基于概率的模式识别算法,虽然名字中带"回归",但实际上是⼀种分类⽅法,在实际应⽤中,逻辑回归可以说是应⽤最⼴泛的机器学习算法之⼀回归问题怎么解决分类问题? 将样本的特征和样本发⽣的...
小样本最近邻分类元训练阶段的损失函数
小样本最近邻分类元训练阶段的损失函数 小样本分类问题一直是机器学习领域的一大难点,因为小样本数据的特点是数据点较少,往往没有足够的样本进行学习,从而导致训练出来的模型泛化能力很差。为了解决这个问题,学者们提出了一种新的方式,即小样本最近邻分类元训练。正则化逻辑回归模型 小样本最近邻分类元训练的主要思想是通过在元训练阶段使用大量不同任务的训练数据集...
多分类逻辑回归公式和参数求解方法
多分类逻辑回归公式和参数求解方法多分类逻辑回归(Multinomial Logistic Regression)是一种用于多类别问题的分类算法,它通过将多个二分类逻辑回归模型组合起来,来进行多分类任务。多分类逻辑回归的公式如下:对于第 k 类样本,我们定义其对应的概率为:P(y=k|x) = exp(Wk * x) / sum(exp(Wj * x))其中,Wk 表示第 k 类的参数,x 是输入样...
多层感知器--MLP神经网络算法
多层感知器--MLP神经⽹络算法提到⼈⼯智能(Artificial Intelligence,AI),⼤家都不会陌⽣,在现今⾏业领起风潮,各⾏各业⽆不趋之若鹜,作为技术使⽤者,到底什么是AI,我们要有⾃⼰的理解.⽬前,在⼈⼯智能中,⽆可争议的是深度学习占据了统治地位,,其在图像识别,语⾳识别,⾃然语⾔处理,⽆⼈驾驶领域应⽤⼴泛.如此,我们要如何使⽤这门技术呢?下⾯我们来⼀起了解"多层感知器",即M...
基于稀疏低秩正则图张量化嵌入的高光谱图像分类方法
(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 107563442 A(43)申请公布日 2018.01.09(21)申请号 CN201710781810.9(22)申请日 2017.09.02(71)申请人 西安电子科技大学 地址 710071 陕西省西安市雁塔区太白南路2号(72)发明人 张向荣 焦李成 韩亚茹 冯婕 侯彪 李阳阳...
一种基于拉普拉斯正则化的低秩稀疏表征图像特征学习方法[发明专利]_百...
专利名称:一种基于拉普拉斯正则化的低秩稀疏表征图像特征学习方法专利类型:发明专利发明人:孟敏,兰孟城,武继刚,王勇申请号:CN201810588297.6申请日:20180608公开号:CN108985161A公开日:20181211专利内容由知识产权出版社提供摘要:本发明公开一种基于拉普拉斯正则化的低秩稀疏表征图像特征学习方法,包括以下步骤:(1)将数据集随机分成训练集和测试集;(2)构建训练集...
基于正则化核最大边界投影维数约简的滚动轴承故障诊断
第36卷第14期振动与冲击JOURNAL OF VIBRATION AND SHOCK Vol.36 No.14 2017基于正则化核最大边界投影维数约简的滚动轴承故障诊断赵孝礼,赵荣珍,孙业北,何敬举(兰州理工大学机电工程学院,兰州730050)主商要:针对旋转机械故障诊断中故障样本获取困难的现状,提出一种基于正则化核最大边界投影(Regulamed Kernel Maximum Margin...
simcse 原理 -回复
simcse 原理 -回复Simcse 原理:提升文本匹配任务效果的半监督学习方法引言正则化半监督方法在自然语言处理(NLP)领域中,文本匹配任务是一个重要的问题。文本匹配任务包括问答系统、语义相似度计算和信息检索等。近年来,基于深度学习的方法在文本匹配任务中取得了显著的突破。Simcse(Siamese Consistency Regularization)是一种半监督学习方法,通过自监督学习和...
少标记半监督学习中的插值对比学习方法[发明专利]
专利名称:少标记半监督学习中的插值对比学习方法专利类型:发明专利正则化半监督方法发明人:周思航,杨希洪,呼晓畅,刘新旺,刘悦,涂文轩,郭瑞斌,唐邓清,陈浩,赖俊,张伦申请号:CN202210024335.1申请日:20220107公开号:CN114372571A公开日:20220419专利内容由知识产权出版社提供摘要:本发明涉及计算机视觉领域,公开了一种少标记半监督学习中的插值对比学习方法,本发明...