共轭梯度法matlab
共轭梯度法matlab 中文: 共轭梯度法(Conjugate Gradient),是一种非常有效的求解对称大型线性系统的近似解的算法。使用共轭梯度法来求解线性系统最终收敛于最小值,它是在不构造正定矩阵时,可以快速求解系统的一个有效解法。 拉格朗日方程,线性系统通常表示为Ax = b,其中A为系数矩阵,b为常数矩阵,x为...
共轭梯度法收敛的条件
共轭梯度法收敛的条件正则化共轭梯度法 共轭梯度法是求解线性方程组的一种迭代算法,它具有收敛速度快、存储量少等优点。但是,共轭梯度法的收敛过程也需要满足一定的条件。本文将从三个方面介绍共轭梯度法收敛的条件。 一、初值的选择 共轭梯度法的收敛与初值的选择密切相关。初始向量的选取对于算法迭代的效率和精度有直接影响。初值应该尽量...
共轭梯度法步骤
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。其中,A为系数矩阵,b为常数向量。步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。步骤3:计算步进长度正则化共轭梯度法令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。α0表示迭代过程中...
双调和方程的有限积分方法
双调和方程的有限积分方法李书伟;徐定华;余跃【摘 要】利用有限积分法求解平面矩形区域双调和方程边值问题.首先,对双调和方程以及边界条件分别进行积分,得到一带有任意函数的线性常微分方程组;其次,将积分产生的任意函数分别进行插值估计,进而转化成为一可求解的线性代数方程组;最后,利用正则化方法求解奇异线性方程组,获得近似解误差估计.通过Matlab进行数值模拟实验获得数值结果,并进行误差分析.数值结果表...
重合度对齿轮传动啮合效率的影响研究
重合度对齿轮传动啮合效率的影响研究黄康;夏公川;赵韩;张祖芳【摘 要】文章针对齿轮瞬时啮合效率的求解和考虑重合度因素的齿轮啮合效率公式等问题进行了研究,通过反渐开线方程建立瞬时啮合效率的迭代公式;利用Tikhonov正则化方法处理关于齿轮啮合效率的不适定问题,进而研究多项式函数拟合周期函数的估计误差,验证效率目标函数的精确度;最后通过效率试验,并考虑齿轮重合度的影响因素,提出齿轮啮合效率公式,进行...
超高维异方差数据下基于边际经验似然的分位数特征筛选
第50卷第2期2023年北京化工大学学报(自然科学版)Journal of Beijing University of Chemical Technology (Natural Science)Vol.50,No.22023引用格式:刘漫雨,黄彬,刘佳乐.超高维异方差数据下基于边际经验似然的分位数特征筛选[J].北京化工大学学报(自然科学版),2023,50(2):112-118.LIU ManY...
ggml模型调优
ggml模型调优摘要:I.简介- 介绍ggml模型- 调优的重要性II.ggml模型的基本原理- 定义和背景- 关键组件III.调优策略- 参数调整- 超参数优化- 正则化IV.模型评估与选择- 评估指标- 交叉验证- 模型选择V.实战案例- 数据集描述- 调优过程- 结果分析VI.总结- 调优的关键要点- 未来发展方向正文:I.简介ggml(Generalized Gradient Modeli...
glip损失函数
glip损失函数摘要:1.GLIP 损失函数的定义与概述 正则化定义2.GLIP 损失函数的关键组成部分 3.GLIP 损失函数的主要应用场景 4.GLIP 损失函数的优点与局限性正文:1.GLIP 损失函数的定义与概述GLIP 损失函数,全称为 Gradient LIP regularization,是一种用于训练深度学习模型的损失函数,主要通过梯度信息进行正...
李雅普诺夫指数 范数
李雅普诺夫指数 范数摘要:1.李雅普诺夫指数和范数的定义与关系 2.李雅普诺夫指数的应用领域 3.李雅普诺夫指数和范数在机器学习中的应用正文:李雅普诺夫指数和范数是数学领域中常见的两个概念,它们之间有着紧密的联系和深刻的内涵。李雅普诺夫指数,也被称为李雅普诺夫稳定性指数,是一种用来描述动态系统稳定性的指标。它是由俄国数学家李雅普诺夫在正则化定义 19 世纪末 20 世纪初提...
面向行业的大规模预训练模型技术和应用评估方法 信通院 行业大模型_百 ...
面向行业的大规模预训练模型技术和应用评估方法 信通院 行业大模型【原创版4篇】目录(篇1)一、引言 二、大规模预训练模型技术概述 1.定义与特点 2.发展历程 三、大规模预训练模型技术在行业中的应用 1.应用领域 2.具体应用案例 四、大规模预训练模型技术的挑战与应对策略 1.数据隐私和安全 ...