688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

python数据归一化处理

2024-09-30

python数据归一化处理    在数据挖掘过程中,很多人会遇到数据量级相差悬殊的问题。这时候就需要进行数据归一化处理,让它们处于同一维度上,方便后续的处理。本文将围绕如何对Python数据进行归一化处理做一个简单介绍。    一、什么是数据归一化处理    数据归一化处理,也称为特征缩放,是将数据按比例缩放,使其限制在特定区间内。这样许...

支持向量机的实现

2024-09-30

支持向量机的实现SVM的实现主要涉及以下几个步骤:1.数据预处理:首先,需要对数据进行预处理,包括数据清洗、特征选择和特征缩放。数据清洗是指对数据进行处理,如去除缺失值或异常值。特征选择是选择对分类任务有影响的特征。特征缩放是对特征进行归一化,使得它们具有相似的尺度。2.定义目标变量:SVM可以用于二元分类和多元分类问题。对于二元分类问题,我们需要将目标变量转换为两个类别。对于多元分类问题,可以使...

transformer中轻量级多头自注意机制的原理及公式介绍

2024-09-30

transformer中轻量级多头自注意机制的原理及公式介绍1. 引言1.1 概述在自然语言处理和机器翻译等领域中,Transformer模型的引入极大地改进了序列到序列任务的表现。其中,自注意机制(self-attention)作为Transformer的核心组件之一,在提供句子内部依赖关系建模能力方面起到了关键作用。本文将着重介绍Transformer中轻量级多头自注意机制的原理及其公式推导方...

基于对抗样本的深度学习模型鲁棒性研究

2024-09-30

基于对抗样本的深度学习模型鲁棒性研究一、综述随着深度学习技术的飞速发展,越来越多的应用场景开始涌现。然而深度学习模型在面对对抗样本时表现得并不理想,这使得鲁棒性成为了一个亟待解决的问题。对抗样本是指经过精心设计的输入数据,能够在不改变原始输入数据本质特征的情况下,引导模型产生错误的输出结果。这种现象在图像识别、语音识别等领域尤为明显,给实际应用带来了很大的困扰。为了提高深度学习模型的鲁棒性,研究者...

通用大模型原理及训练实践

2024-09-30

通用大模型原理及训练实践一、引言深度学习在计算机视觉、自然语言处理等领域取得了巨大的成功。但是,训练大规模的深度神经网络需要大量的计算资源和时间,这使得许多研究者无法进行高质量的研究。为了解决这个问题,通用大模型应运而生。本文将介绍通用大模型的原理及训练实践。二、通用大模型原理通用大模型是指一个可以被预先训练并在各种任务上微调的深度神经网络模型。其基本思想是使用海量数据预先训练一个具有强大表征能力...

transformer的基本架构

2024-09-30

文章主题:深入探讨Transformer的基本架构一、引言Transformer作为一种革命性的神经网络架构,已经在自然语言处理和其他领域取得了巨大成功。它的基本架构和工作原理是我们必须深入理解的重要主题。在本文中,我们将从简单到复杂,逐步探讨Transformer的基本架构,帮助读者更好地理解这一概念。二、什么是Transformer在自然语言处理(NLP)中,Transformer是一种基于注...

基于人工智能的图像识别技术研究

2024-09-30

基于人工智能的图像识别技术研究摘要:本论文深入研究了基于人工智能的图像识别技术,重点关注了深度学习在图像识别中的应用。通过探究卷积神经网络、循环神经网络以及Transformer模型等技术,我们展示了它们在图像分类、目标检测和图像生成等任务中的应用。此外,本论文还介绍了数据预处理、特征提取和模型优化等关键技术,以及图像识别技术在实际场景中的成功案例。关键词: 深度学习;图像识别;研究;引言:图像识...

概率熵归一化pqn原理

2024-09-30

概率熵归一化pqn原理正则化和归一化的关系概率熵归一化PQN原理是一种优化算法,它将每个模型的概率估算量化为熵值,并将熵值标准化为一分值,作为模型的优劣依据,从而实现对模型的优化。PQN原理将概率熵和其他相关参数结合起来,以解决归一化问题。首先该算法建立概率曲线,其曲线由多个模型层次组成,每个模型的概率熵值作为Y轴的值。然后将划分的模型层次进行曲线对比,比较模型的熵值以及其相关参数,然后将概率估计...

两个 归一化方法

2024-09-30

两个 归一化方法归一化方法通常用于将数据缩放到特定的范围,例如 [0,1] 或 [-1,1],以便更好地进行数据处理和分析。以下是两种常见的归一化方法:1. Min-Max归一化(也称为离差标准化):该方法将原始数据缩放到 [0,1] 范围。数学公式如下:\(normalized\_value = \frac{original\_value - min\_value}{max\_value - m...

gatconv参数

2024-09-30

gatconv参数【引言】在机器学习和深度学习领域,尤其是在自然语言处理任务中,文本分类和情感分析是常见且重要的任务。在这个过程中,我们常常会使用到GAT(Graph Attention Network)这种图卷积网络结构。GAT能够有效地对图结构数据进行学习和推理,从而帮助我们更好地进行文本分类和情感分析等任务。而在GAT中,GATCONV参数起着至关重要的作用。本文将详细介绍GATCONV参数...