时变参数向量自回归模型
时变参数向量自回归模型1. 引言时变参数向量自回归模型(Time-Varying Parameter Vector Autoregressive Model,TVAR)是一种用于分析时间序列数据的经济计量模型。它可以捕捉到时间序列数据中的动态性和非线性关系,因此在经济学、金融学等领域被广泛应用。本文将介绍时变参数向量自回归模型的基本原理、建模方法以及应用案例,帮助读者全面了解该模型。2. 基本原理...
自适应确定dbscan算法参数的算法研究
自适应确定dbscan算法参数的算法研究DBSCAN算法是一种无监督聚类算法,在聚类过程中需要给定两个参数:邻域半径(ε,eps)和最小邻域点数(MinPts)。这两个参数直接影响聚类结果的质量,但是很难确定合适的参数值。自适应确定DBSCAN算法参数的算法是一种动态确定DBSCAN算法参数的方法,主要分为以下步骤:1. 初始化ε和MinPts的值,并给定一个误差阈值Eps和一个最小累计次数K。这...
自回归模型参数估计及其应用研究
正则化参数的自适应估计自回归模型参数估计及其应用研究自回归模型是一种常用的时间序列分析方法,它可以用来描述和预测一个变量随时间变化的规律。自回归模型的参数估计是自回归模型的基础,它是模型的准确性和有效性的关键。参数估计的目的是估计自回归模型中的参数,以便预测未来的变量值。自回归模型参数估计的方法有最小二乘法、最小均方根误差法、最大似然估计法等。最小二乘法是最常用的参数估计方法,它求解的是最小化残差...
自适应矩估计算法
自适应矩估计算法自适应矩估计算法,是一种用于概率分布参数估计的方法。它的主要思想是:基于观测样本的矩与理论分布的矩之间的匹配程度,来估计未知参数。该方法通常用于非参数估计,具有较好的适应性和鲁棒性。下面将从定义、原理、优缺点三个方面详细介绍自适应矩估计算法。定义自适应矩估计算法,是一种利用联合矩来估计未知概率分布参数的方法。该算法主要通过构造带有权重的矩来匹配观测样本的矩和理论分布的矩,进而估计未...
多尺度细节增强与自适应γ_变换的图像增强
doi:10.3969/j.issn.1003-3106.2023.06.004引用格式:孙小迎,邹艳.多尺度细节增强与自适应γ变换的图像增强[J].无线电工程,2023,53(6):1262-1268.[SUNXiaoying,ZOUQunyan.ImageEnhancementBasedonMultiscaleDetailEnhancementandAdaptiveγTransformati...
基于不确定性感知的语音分离方法
技术应用2021年第42卷第1期自动化与信息工程35*基金项目:广东省自然科学基金(2018A030313306)基于不确定性感知的语音分离方法*涂斌炜吕俊(广东工业大学自动化学院,广东广州510006)摘要:为抵御噪声的干扰,提出一种基于不确定性感知的语音分离方法。在训练阶段,采用双链路架构分别学习噪声和语音源成分的编解码子网和分离子网;在测试阶段,以闭式解的形式自适应更新噪声编码子网,减小训练...
一种基于分阶段交叉训练的唇语识别方法及系统
(19)中华人民共和国国家知识产权局(12)发明专利说明书(10)申请公布号 CN 114419731 A(43)申请公布日 2022.04.29(21)申请号 CN202210025779.7(22)申请日 2022.01.11(71)申请人 西安邮电大学 地址 710121 陕西省西安市长安街618号(72)发明人 路龙宾 许学斌 刘一彪 范海潮 (74)专利代理机构...
梯度下降算法
梯度下降算法是一种非常重要的机器学习算法,在许多领域都有广泛的应用。它是一种优化算法,用于到一个函数的最小值。在机器学习中,我们通常使用来最小化某个损失函数。本文将从以下方面进行讨论:- 的基本原理- 的两种形式:批量梯度下降和随机梯度下降- 的优缺点- 如何选择学习率- 如何避免陷入局部最小值一、的基本原理在机器学习中,我们通常会遇到一个问题:给定一个数据集,我们需要到一个能够对数据进正则化...
基于聚类与自适应ALGBM_的预测模型研究
第 22卷第 3期2023年 3月Vol.22 No.3Mar.2023软件导刊Software Guide基于聚类与自适应ALGBM的预测模型研究廖雪超1,2,马亚文1,2(1.武汉科技大学计算机科学与技术学院;2.智能信息处理与实时工业系统重点实验室,湖北武汉 430065)摘要:建筑能耗预测在建筑能源管理、节能和故障诊断等方面发挥着重要作用,而建筑能耗数据之间存在非线性和离值点,导致能耗预...
基于深度学习的三维乳腺超声影像自适应分割
第41卷 第1期吉林大学学报(信息科学版)Vol.41 No.12023年1月Journal of Jilin University (Information Science Edition)Jan.2023文章编号:1671⁃5896(2023)01⁃0084⁃09基于深度学习的三维乳腺超声影像自适应分割收稿日期:2022⁃04⁃05基金项目:黑龙江省自然科学基金资助项目(LH2021F039)...