688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

人工智能、机器学习及深度学习的起源和发展

2024-09-29

⼈⼯智能、机器学习及深度学习的起源和发展发展时间线第⼀阶段:⼈⼯智能起步期1956—1980s1956达特茅斯会议标志AI诞⽣1957神经⽹络Perceptron被罗森布拉特发明1970受限于计算能⼒,进⼊第⼀个寒冬第⼆阶段:专家系统推⼴1980s—1990s1980 XCON专家系统出现,每年节约4000万美元1986 BP ,Geoffrey Hinton提出了前馈算法,⼀个通过对输⼊数据按照...

人工智能机器学习技术练习(习题卷11)

2024-09-29

人工智能机器学习技术练习(习题卷11)说明:答案和解析在试卷最后第1部分:单项选择题,共155题,每题只有一个正确答案,多选或少选均不得分。1.[单选题]分箱用于处理()A)连续型数据B)离散型数据C)连续型和离散型数据即可2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签3.[单选题]关于回归问题,说法正确的是()A)可以不需要lab...

CNN算法在语音识别中的实现及优化

2024-09-29

CNN算法在语音识别中的实现及优化随着时代的发展和科技的不断进步,计算机技术也在迅猛地发展,人工智能正逐渐成为了一个热门的话题。在人工智能领域中,语音识别技术是一个重要的方向。而在语音识别中,CNN算法的应用越来越受到人们的重视。本文将会对CNN算法在语音识别中的实现及优化进行探讨。一、CNN算法概述CNN算法也叫卷积神经网络,是深度学习中的一种神经网络模型,具有强大的特征抽取和自适应学习能力。C...

基于简单L12稀疏正则化的高光谱混合像元分解

2024-09-29

基于简单L12稀疏正则化的高光谱混合像元分解正则化可以产生稀疏权值高光谱图像解混方法中基于稀疏性的混合像元分解方法成为近来研究的热点,其中稀疏正则化高光谱混合像元分解方法(SUnSAL)得到了较好的解混效果。尽管如此,但正则化解的稀疏性和稳健性并不好。基于正则子比正则子更易于求解,同时比正则子具有更好的稀疏性和稳健性,本文引入用正则子来代替正则子。同时,采用了一种简单有效的稀疏正则化的求解方法,将...

《具有L_q-正则项的稀疏线性判别分析及主成分分析》范文

2024-09-29

《具有L_q-正则项的稀疏线性判别分析及主成分分析》篇一引言随着数据科学的迅猛发展,高维数据在各领域中扮演着越来越重要的角。为了有效地处理这些高维数据,许多统计学习方法被提出并广泛应用于模式识别、机器学习和数据分析等领域。其中,线性判别分析(LDA)和主成分分析(PCA)是两种常用的技术。本文将介绍一种结合L_q-正则项的稀疏线性判别分析及主成分分析方法,以实现更有效的特征提取和分类。一、L_q...

基于正则化算法的高维数据分类技术研究

2024-09-29

基于正则化算法的高维数据分类技术研究第一章 绪论近年来,随着互联网技术和数据采集技术的快速发展,各种类型的数据呈爆炸式增长。高维数据分类技术已经成为数据挖掘和机器学习领域中最重要的问题之一。高维数据在分类任务中的困难与众不同之处在于,高维数据呈现稀疏和过拟合的问题。解决高维数据分类难题的一种有效方法是采用正则化算法。本文将对基于正则化算法的高维数据分类技术进行详尽探讨。第二章 高维数据分类算法2....

基于正则化模型的K—SVD算法及其应用

2024-09-29

基于正则化模型的K—SVD算法及其应用作者:刘坚桥 唐加山来源:《软件导刊》2018年第08期        摘要:提出一种基于正则化方法的K均值奇异值分解(K-SVD)算法。新算法在更新字典阶段,建立一种正则化模型,针对经典K-SVD算法中每次原子更新,引入正则项参与字典更新过程,将每次更新原子所产生的误差限制在设定范围内完成原子更新。在K-SVD算法正则...

基于稀疏约束的流形正则化概念分解算法

2024-09-29

基于稀疏约束的流形正则化概念分解算法1. 引言a. 稀疏约束的流形正则化在信息处理领域的重要性正则化可以产生稀疏权值b. 介绍本论文的核心:基于稀疏约束的流形正则化概念分解算法2. 背景知识a. 稀疏表达和约束的概念及其在信号处理中的应用b. 流形学习和正则化在数据降维和特征提取中的作用3. 方法描述a. 稀疏约束的流形正则化的基本思想和优化目标b. 稀疏约束的流形正则化与概念分解的结合c. 算法...

Matlab中的正则化与稀疏表示技术

2024-09-29

Matlab中的正则化与稀疏表示技术引言正则化与稀疏表示技术是机器学习和数据分析领域中常用的工具。它们在处理高维数据和特征选择中起着重要的作用。Matlab作为一种强大的数值计算和数据分析软件,提供了丰富的工具和函数来支持正则化和稀疏表示技术的应用。本文将介绍Matlab中的正则化和稀疏表示相关的函数和使用方法,并探讨在实际问题中的应用。1. 正则化算法1.1 岭回归岭回归是一种广泛使用的正则化方...

基于稀疏正则优化的图像复原算法

2024-09-29

None正则化可以产生稀疏权值...