688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

模型压缩方法

2024-09-29

模型压缩方法    模型压缩是指通过降低模型的复杂度和参数量,减小模型的存储和计算资源需求,提高模型的运行效率。模型压缩方法通常可以分为以下几种:    1. 剪枝:剪枝是一种常见的模型压缩方法,它通过删除一些冗余的连接或神经元来减小模型的规模。剪枝可以分为结构剪枝和权重剪枝两种方式,其中结构剪枝主要删除冗余的神经元或层,权重剪枝则是删除小于预定义阈值的权重...

自适应锚框计算流程

2024-09-29

自适应锚框计算流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: Thi...

大连理工大学研究生企业专业实践报告

2024-09-29

大 连 理 工 大 学企业专业实践报告学 部(院): 信息与通信工程学院 专      业:    学 生 姓 名:            学      号:          指 导 教 师:&nb...

Boosting算法之Adaboost和GBDT

2024-09-29

Boosting算法之Adaboost和GBDT  Boosting是串⾏式集成学习⽅法的代表,它使⽤加法模型和前向分步算法,将弱学习器提升为强学习器。Boosting系列算法⾥最著名的算法主要有AdaBoost和梯度提升系列算法(Gradient Boost,GB),梯度提升系列算法⾥⾯应⽤最⼴泛的是梯度提升树(Gradient Boosting Decision Tree,GBDT)...

深度学习及其应用期末测试练习题及答案

2024-09-29

一、单选题1、‌对于某卷积层,关于卷积核大小的描述(假设通道数固定)正确的是哪个?A.卷积核越小,更新参数的计算量越少,但更容易得到局部的特征。B.卷积核越大,其取得的特征越全面,得到的特征图越大。C.卷积核越大,越容易提取细节特征D.卷积核只能选择3、5、7等奇数值。正确答案:A2、‎下面有关神经网络梯度消失说法错误的是()​A.当神经网络的隐层增加时,就容易发生梯度消失问题,表现在靠近输入层的...

机器学习_温州大学中国大学mooc课后章节答案期末考试题库2023年_百度文...

2024-09-29

机器学习_温州大学中国大学mooc课后章节答案期末考试题库2023年1.GBDT由哪三个概念组成:( )参考答案:Regression Decision Tree(即 DT)_Gradient Boosting(即 GB)_Shrinkage(缩减) 2.对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。下面哪些模型属于线性模型?参考答案:K-means_k近邻_感知机 3.逻辑...

逻辑回归实现葡萄酒分类

2024-09-29

逻辑回归实现葡萄酒分类1. 介绍逻辑回归(Logistic Regression)是一种常用的机器学习算法,用于解决分类问题。该算法可用于将数据划分为两个或多个类别,并给出新数据属于某个类别的概率。本文将以葡萄酒分类为例,详细介绍逻辑回归的原理和实现过程。2. 逻辑回归原理逻辑回归是基于线性回归的一个变种,它通过一个称为逻辑函数(Logistic Function)的函数对结果进行转换,使其适用于...

一种低秩和图正则化的协同稀疏高光谱解混

2024-09-29

doi:10.3969/j.issn.1003-3106.2023.04.016引用格式:韩红伟,陈聆,苗加庆.一种低秩和图正则化的协同稀疏高光谱解混方法[J].无线电工程,2023,53(4):868-876.[HANHongwei,CHENLing,MIAOJiaqing.ALow rankandGraphRegularizationCollaborativeSparseHyperspectr...

结合形态学重建和超像素的多特征FCM分割算法

2024-09-29

结合形态学重建和超像素的多特征FCM 分割算法①马喃喃,  刘 丛(上海理工大学 光电信息与计算机工程学院, 上海 200093)通讯作者: 马喃喃摘 要: 针对现有模糊聚类分割算法对噪声的鲁棒性差且提取的图像特征不充分等问题, 本文提出了一种结合形态学重建和超像素的多特征模糊 C-均值(FCM)分割算法. 首先, 利用形态学闭合重建处理原图像, 提高了算法的鲁棒性和细节保护能力. 其次...

机器学习的常见模型

2024-09-29

机器学习任务中常见的方法有:决策树学习,关联规则学习,人工神经网络,深度学习,归纳逻辑设计,支持向量机,聚类,贝叶斯网络,强化学习,表示学习,相似度和度量学习,稀疏字典学习,遗传算法等。一、决策树学习决策树学习就是根据数据的属性采用树状结构建立的一种决策模型,可以用此模型解决分类和回归问题。常见的算法包括CART,ID3,C4.5等。可以根据数据集来构建一颗决策树,他的重要任务就是根据数据中所蕴含...