688IT编程网

688IT编程网是一个知识领域值得信赖的科普知识平台

四种TSVR型学习算法的性能比较

2024-10-01

四种TSVR型学习算法的性能比较李艳蒙;范丽亚【摘 要】It is w ell know n that the computational complexity and sparsity of learning algorithms based on support vector regression machines (SVRs) are two main factors for analyzi...

基于YOLOv5的目标检测算法研究

2024-10-01

基于YOLOv5的目标检测算法研究一、本文概述随着技术的不断发展,目标检测作为计算机视觉领域的关键技术之一,其应用场景也日益广泛。从智能安防、自动驾驶,到医疗影像分析、工业自动化等领域,目标检测都发挥着不可或缺的作用。其中,YOLOv5(You Only Look Once version 5)作为近年来备受关注的目标检测算法,其高效性和准确性得到了业界的广泛认可。本文旨在深入研究YOLOv5目标...

基于深度学习的人体动作识别和姿态估计算法研究

2024-10-01

基于深度学习的人体动作识别和姿态估计算法研究    基于深度学习的人体动作识别和姿态估计算法研究    摘要:人体动作识别和姿态估计是计算机视觉领域的热门研究方向。随着深度学习算法的发展,基于深度学习的人体动作识别和姿态估计算法也取得了巨大的进展。本文主要研究了基于深度学习的人体动作识别和姿态估计算法,从数据集、网络结构、训练方法和评估指标等方面进行了深入探...

极限梯度提升算法

2024-10-01

极限梯度提升算法1 什么是极限梯度提升算法极限梯度提升算法(XGBoost)是一种先进的机器学习算法,由中国科学家陈天奇于2015年推出。它是梯度提升算法(GBDT)的一种高效实现,对于大型数据集和复杂模型的建立都具有出的效果。在各类数据竞赛中,XGBoost取得了许多优异的成绩,甚至成为了Kaggle 平台上最受欢迎的数据竞赛算法之一。2 XGBoost的优点XGBoost具有许多优点,其主要...

...的数学概念出发简述梯度下降算法的原理及其改进方法

2024-10-01

从泰勒级数展开和梯度的数学概念出发简述梯度下降算法的原理及其改进方法梯度下降算法是一种常用的优化算法,它在机器学习和数据挖掘中被广泛应用。本文将从泰勒级数展开和梯度的数学概念出发,简述梯度下降算法的原理及其改进方法。1. 泰勒级数展开泰勒级数展开是数学中的一种重要工具,用于将一个函数表示为无穷级数的形式。假设函数f(x)在点a处具有连续的n阶导数,则可以使用泰勒级数展开将f(x)表示为:f(x)...

RIS_辅助去蜂窝大规模MIMO_系统低复杂度预编码算法设计

2024-10-01

doi:10.3969/j.issn.1003-3114.2024.02.004引用格式:胡亚婷,史恩宇,许柏恺,等.RIS辅助去蜂窝大规模MIMO系统低复杂度预编码算法设计[J].无线电通信技术,2024,50(2):245-252.[HUYating,SHIEnyu,XUBokai,etal.LowComplexityPrecodingAlgorithmDesignforRIS aidedCe...

相关系数较高ruvseq批次效应算法校正

2024-10-01

相关系数较高ruvseq批次效应算法校正全文共四篇示例,供读者参考第一篇示例:正则化改进算法    近年来,高通量测序技术的广泛应用使得生物学研究领域取得了前所未有的进展。由于批次效应等潜在的混杂因素的存在,有时会导致数据质量下降,从而影响到数据分析的准确性和可靠性。针对这一问题,研究人员提出了各种算法和方法来进行批次效应的校正。ruvseq是一种较为常用的批次效应校正算法,其...

基于改进ShuffleNetV2的织物颜恒常性算法

2024-10-01

收稿日期:20221012基金项目:国家自然科学基金资助项目(51735010);西安现代智能纺织设备重点实验室项目(2019220614S Y S 021C G 043)㊂作者简介:杨必成(1995),男,山西临汾人,硕士研究生㊂通信作者:张团善(1969),男,湖北随州人,副教授,博士㊂E -m a i l :z h a n g t u a n s h a n @x pu .e d u .c...

深度强化学习算法的优化方法研究

2024-10-01

深度强化学习算法的优化方法研究引言:深度强化学习是人工智能领域的前沿研究方向之一。它通过组合深度学习和强化学习的方法,使得智能系统能够通过与环境的交互学习和改进自身的决策策略。然而,深度强化学习算法的优化方法是当前研究的重要问题之一。随着深度学习和强化学习的迅猛发展,如何优化深度强化学习算法,提高学习效率和稳定性成为了研究者关注的焦点。一、模型基准与损失函数的选择深度强化学习模型的选择对于算法的性...

动态载荷时域识别的联合去噪修正和正则化预优迭代方法

2024-10-01

动态载荷时域识别的联合去噪修正和正则化预优迭代方法作者:肖悦 陈剑 李家柱等来源:《振动工程学报》2013年第06期        正则化改进算法摘要: 系统响应可表示为单位脉冲响应函数与激励载荷的卷积,将其离散化一组线性方程组,则载荷识别问题即转化为求解线性方程组的反问题。针对响应中带有噪音时载荷识别的困难,提出了联合奇异熵去噪修正和正则化预优的共轭梯度迭...